power your future

Low voltage
switchgears

## Low voltage switchgears

## TABLE OF CONTENTS

1 RN-W ..... 3
2 ZR-W ..... 17
3 INSTAL-BLOK ..... 50
4 BK, BKD - Capacitor banks ..... 66
$5 \quad$ LV cable boxes ..... 73
6 Thermosetting plastic enclosures ..... 105
$7 \quad$ Sivacon S8 ..... 125

## Low Voltage switchgear

1 / RN-W


## INTRODUCTION

The subject of this document is an RN-W type low voltage switchgear intended to supply LV electrical devices. This type of switchgear is widely used in municipal transformer stations, in industrial plants, department stores and other facilities.

## CHARACTERISTICS

possibility of visual inspection of the condition of cable connections without opening the switchgear,

- all cable connections are made in the lower part of the switchgear,
- small dimensions, compact construction,
possibility of metering the current at the outgoing circuits,
possibility of safe replacement of a damaged switch disconnector without having to de-energise the switchgear,
- possibility of expanding the unit while live,
- cable connections without crimping of cable terminals,
- may operate with TN-S, TN-C, TN-C-S, TT and IT type low voltage cable grids,
possibility of feeding the outgoing cables upwards,
- fuse slot powered ahead of the switching device installed on the enclosure of the incoming unit.


## SYSTEM OF INTERLOCKS

High level of safety was achieved by:

- an interlock which allows the replacement of fuses only in a dead state, after circuit disconnection, without having to use a special grip,
- secure grounding of lower switch disconnector terminals (outgoing feeders) by installation of earthing devices,
- rapid de-energising of the entire switchgear under full load through the use of a quick-acting visible gap switch disconnector,
- possibility of locking the switch disconnector in an open state, preventing accidental energisation,
- the use of an interlock between the doors and the main switch disconnector (when an INP-1250 switch disconnector is used), enabling the opening of doors only when the switch disconnector is off.


## SWITCHGEAR DESIGN

The switchgear enclosure is made with bent zinc aluminium sheet elements riveted together, ensuring equipotential bonding.
The switchgear is configured using independent modules (incoming, outgoing, metering, etc.), enabling easy expansion of existing units and design of new units.

ELECTRICAL EQUIPMENT

- The incoming module may use the following devices:
- INP-1250, INP-1600 or INP-2000 switch disconnectors - as standard,
- or others on arrangement with the manufacturer,
- MCCB 630 to 1600 A circuit breakers,
- ACB 630 to 1600 A circuit breakers,
- the outgoing bays may use the following devices:
- ARS size 00 to 3 manufactured by Apator S.A. - as standard,
- BTVC size 00 to 3 manufactured by Pronutec - as standard,
- 3 NSL-E size 00 to 3 manufactured by EFEN - as standard,
- or others on arrangement with the manufacturer.
- Additionally the switchgear may be equipped with:
- current and voltage control metering,
- semi-indirect energy metering system,
- area lighting module,
- capacitorbank,
- capacitor for transformer no-load compensation.
- Busbar connections are made with copper flat bars with a cross-section adapted to rated currents,
- In case of ARS, BTVC, NSL-E type switch disconnectors it is possible to install two size 00 switch disconnectors instead of a single size 1 to 3 switch disconnector with no changes to the switchgear design.


## BASIC TECHNICAL DATA

Compliance with standards:
The RN-W type switchgear meets the requirements of the following standards:

- PN-EN 61439-1 - „Low-voltage switchgear and controlgear assemblies. General
- PN-EN 61439-2-„Low-voltage switchgear and controlgear assemblies. Power switchgear and controlgear
- PN-EN 61439-5-„Low-voltage switchgear and controlgear assemblies. Assemblies for power distribution in public
- PN-EN 50274-„Low-voltage switchgear and controlgear assemblies. Protection against electric shock. Protection unintentional direct contact with hazardous live parts",
- PN-EN 62262 - „Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK
- PN-EN 60529 - „Degrees of protection provided by enclosures (IP Code)",

| Ecotrical data |  |
| :---: | :---: |
| Rated insulation voltage | 1000 V |
| Rated switching voltage | $400 \mathrm{~V} / 690 \mathrm{~V} / 800 \mathrm{~V}$ |
| Test impulse withstand voltage | 8 kV |
| Rated frequency | 50 Hz |
| Rated current of the switchgear | 1250 A / 1600 A / 2000 A |
| Rated short-time withstand current | $35 \mathrm{kA} \mathrm{(1s)}$ |
| Rated peak withstand current | do 77 kA |
| Mechanical data |  |
| Dimensions | Width depending on the configuration Height from 1275 up to 2075 mm Depth 270 / 320 / 400 mm |
| IP protection rating | IP2X / IP4X |
| IK protection rating | up to IK 10 |
| Surface protection | framework: Aluzinc or painted steel sheet covers: Aluzinc or painted steel sheet front panels: plastic |
| Powder painting (option): | standard - RAL 7035 other colours on request |
| Plastic components | Halogen-free, self-extinguishing, fire-resistant, CFC-free |
| Service conditions: |  |
| Ambient temperature <br> - Lower limit of ambient temperature <br> - Upper limit of ambient temperature <br> - Average daily temperatures over 24 hours | Ambient temperature $\begin{gathered} -5^{\circ} \mathrm{C}\left(-25^{\circ} \mathrm{C}\right)^{11} \\ +40^{\circ} \mathrm{C} \\ -5^{\circ} \mathrm{C} \text { do }+35^{\circ} \mathrm{C} \end{gathered}$ |
| Relative humidity | up to $50 \%$ (at a temp. of $40^{\circ} \mathrm{C}$ ) |
| installation altitude | up tp 1000 m n.p.m. |
| atmosphere at the place of installation | free from chemically aggressive and conducting dust, fumes and gases |

At the customer's request it is possible to design a switchgear adapted to other conditions.

## NOTE:

${ }^{1)}$ Depending on the devices used.


The switchgear is composed of independent elements (modules) which may be assembled into various sets. The basic modules of the RN-W switchgear include:

- outgoing module,
- incoming module,
- metering module,
- other modules, e.g. area lighting, installation devices, automation, etc.

Design options of individual elements are presented in tables.


Between 5 and 12 fuse switch disconnectors of various manufacturers can be installed in the outgoing module, size 1 to 3 with transformers. Outgoing modules can be combined into sets.

## Outgoing module

| Module name | Number of disconnectors <br> for installation, size 1 to 3 <br> (size 00) | Dimensions $[\mathrm{mm}]$ <br> [width x height x depth] | Notes |
| :--- | :--- | :--- | :--- |
| Standard design |  |  |  |


| CO-5 | $5(10)$ | $550 \times 1275 \times 400(320)$ | For ARS, BTVC and NSL switch <br> disconnectors it is possible to install <br> two size 00 swith disconnectors <br> instead of one size 1 to 3 switch <br> disconnector. |
| :--- | :--- | :--- | :--- |
| C0-10 | $10(20)$ | $1100 \times 1275 \times 400(320)$ | (20) |

## Wykonanie specjalne

| C0-6 | 6 (12) | $700 \times 1275 \times 400$ (320) | For ARS, BTVC and NSL switch disconnectors it is possible to install two size 00 switch disconnectors instead of one size 1 to 3 switch disconnector. |
| :---: | :---: | :---: | :---: |
| C0-7 | 7 (14) | $800 \times 1275 \times 400$ (320) |  |
| C0-8 | 8 (16) | $900 \times 1275 \times 400$ (320) |  |
| C0-9 | 9 (18) | $1000 \times 1275 \times 400$ (320) |  |
| C0-12 | 12 (24) | $1300 \times 1275 \times 400$ (320) |  |
| CZO-1 | 9 (18) | $1100 \times 1275 \times 400$ (320) | The incoming/outgoing module adapted to the installation of an NH - latr 910 type switch disconnector and size 1 to 3 disconnectors. Details, see figure 1. |
| CZO-2 | 10 (20) | $1650 \times 1275 \times 400$ (320) | The incoming/outgoing module adapted to the installation of an INP-1250 switch disconnector and size 1 to 3 outgoing switch disconnectors. Details, see figure 2. |
| co-...xx | 0 | XXX x $1275 \times 400$ (320) | Outgoing module adapted to the installation of 2 or 3 compact circuit breakers from 250 to 630 A. Details, see figure 3. Module name and dimensions depend on the type and number of installed switch disconnectors. |

Sizes of the used fuse links and cables when cable connections are used. V-klema type depends on the device type:

| Device group | Current ranges of the fuse links | Max. cable cross-section |
| :--- | :--- | :--- |
| GR. 00 | $6 \div 160 \mathrm{~A}$ | up to $95 \mathrm{~mm}^{2}$ (depending on the device type) |
| GR. 1 | $6 \div 250 \mathrm{~A}$ | $240 \mathrm{~mm}^{2}\left(300 \mathrm{~mm}^{2}-\right.$ in case of a wire with <br> a sector cross-section $)$ |
| GR. 2 | $63 \div 400 \mathrm{~A}$ |  |
| GR. 3 | $250 \div 630 \mathrm{~A}$ |  |

Figure 1 - CZO-1 incoming/outgoing module with an NH - latr 910 switch disconnector


Figure 2 - CZO-2 incoming/outgoing module with a switch disconnector


Additional equipment is marked with red

## Figure 3 - CO-3 Outgoing module with switch disconnectors



[^0]INCOMING COMPARTMENT (INCOMING MODULE)


In the incoming module, an INP 1000-2000 switch disconnector or other manufacturer's switch disconnector (after consultation) or compact circuit breaker with rated current ( $630-1600 \mathrm{~A}$ ) can be installed. The circuit breaker or switch disconnector can be equipped with a motor-drive mechanism. It is also possible to install ammeters, voltmeters or a network analyser.

| Incoming module |  |  |  |
| :---: | :---: | :---: | :---: |
| Module name | Installed device | Dimensions [mm] [width $x$ height $x$ depth] | Notes |
| Standard design |  |  |  |
| CZ-1 | INP 1250 or other switch disconnector | $550 \times 675 \times 400$ (320) | The possibility of installation of current transformers, ammeters, voltmeter and transformers for semi-indirect energy metering |
| Custom design |  |  |  |
| CZ-4 | 630-1600 A compact circuit-breaker | $550 \times 675 \times 400$ (320) | Drive on the doors, current transformers may not be installed |
| CZ-5 | 630-1600 A compact circuit-breaker ${ }^{* *}$ | $550 \times 800 \times 400$ (320) | As for standard design |
| CZ-6 | INP 1250 or other switch disconnector ${ }^{*}$ | $1100 \times 1275 \times 400$ (320) | As for standard design, additionally installation circuit interlocks may be installed for the station's auxiliary circuits. Details, see figure 4. |
| CZ-9 | 630-1600 A compact circuit-breaker*) | $550 \times 1275 \times 400$ (320) | As above. Details, see figure 5. |

${ }^{\text {* }}$ - the devices used in the switchgear can be equipped with a motor drive, after prior consultation with the manufacturer.


Figure 5 - CZ-9 incoming/outgoing module with compact circuit breakers


METERING COMPARTMENT (METERING MODULE)


The metering module is used to install an energy meter for billing purposes, designed as a panel for installation of one to four meters. The metering system is also equipped with a metering terminal block, e.g. SKa, and voltage circuits protection.

| Metering module |  |  |  |
| :---: | :---: | :---: | :---: |
| Module name | Installed device | Dimensions [mm] [width $x$ height $x$ depth] | Notes |
| Standard design |  |  |  |
| TP-1 | 1 or 2 electricity meters | $550 \times 675 \times 400$ (320) | Details, see figure 6. |
| Custom design |  |  |  |
| TP-2 | 3 electricity meters | $750 \times 675 \times 400$ (320) | Details, see figure 7. |
| TP-3 | 3 or 4 electricity meters | $1100 \times 675 \times 400$ (320) | Details, see figure 8. |



Figure 7 - TP-2 metering panel


Figure 8 - TP-3 metering panel


## OTHER COMPARTMENTS AND ADDITIONAL ELEMENTS

In the RN-W switchgear other modules may be installed in standard dimension cabinets, e.g.:

- area lighting module,
- installation outgoing feeders
- automation
- ATS system
- others

| Other modules |  |  |  |
| :---: | :---: | :---: | :---: |
| Module name | Equipment | Dimensions [mm] [width $x$ height $x$ depth] | Notes |
| Standard design |  |  |  |
| T0 | Area lighting module | $550 \times 1275 \times 400$ (320) | Installed device. <br> Details, see figure 9. |
| Custom design |  |  |  |
| TI-1 | Installation switch disconnectors or circuit breaker | $550 \times 675 \times 400$ (320) | 2 rows of modular devices Each row can be equipped with 22 devices with a width of 18 mm |
| TI-2 | Wyłącznik lub rozłączniki instalacyjne | $550 \times 1275 \times 400$ (320) | 4 rows of modular devices Each row can be equipped with 22 devices with a width of 18 mm |
| $\begin{aligned} & \text { TA-1 } \\ & \text { TA-2 } \end{aligned}$ | Automation system | $\begin{aligned} & 550 \times 675 \times 400(320) \\ & 550 \times 1275 \times 400(320) \end{aligned}$ | The design of the system to be agreed upon with the manufacturer |
| TSZR | Automatic transfer switching system | $550 \times 1275 \times 400$ (320) | The design of the system to be agreed upon with the manufacturer |
| TX | Other systems | $\begin{aligned} & 550 \times 675 \times 400(320) \\ & 550 \times 1275 \times 400(320) \end{aligned}$ | To be agreed with the manufacturer |

Figure 9 - TO area lighting module



A cover for leading the busbar power supply out of the switchgear. Provides an IP20 protection rating and protects the personnel against touching of live elements.


A frame enabling the feeding of cables into the switchgear in rooms without cable trays. The cable frame height "a" depends on the bending radius of the cables.

## PLACEMENT OF THE SWITCHGEAR AND INSTALLATION OF CONNECTIONS

The RN-W switchgears are designed for indoors installation. They can be placed directly on concrete flooring of the facility. Regardless of the type of foundation, switchgears must be placed exactly horizontally (maximum deviation may not exceed 2 mm over 1 m of base length). The switchgear should be fixed to the foundation with 4 M 8 bolts in locations shown on figure 11 . The power supply is provided at the top of the switchgear with busbars.

NOTE: Busbar connections to the switchgear must be protected from direct contact (using the original cover or one made by the installer), minimum IP20 protection rating.

Phase cables are connected directly to devices' terminals. The connection height is shown on figure 12.

The devices are adapted to connection of cables up to $95 \mathrm{~mm}^{2}$ for size 00 devices (depending on the type of device) and to connect cables with a cross-section up to $240 \mathrm{~mm}^{2}\left(300 \mathrm{~mm}^{2}\right.$ conductor with a sector cross-section) for size 1-3 devices.

Figure 11 - Arrangement of holes in the foundation for the
installation of RN-W switchgear

Figure 12 - Height of the cable connection terminals


## Low Voltage switchgear



## INTRODUCTION

The ZR-W system switchgears are designed for distribution of electricity at each level, as well as control and protection of electrical devices against short-circuit and overload effects. They can be used as primary switchgears, sub-distribution boards, or as control cabinets.

Their universal configuration enables the use of ZR-W switchgears in the following branches of industry:

- chemical/petr
$\square$
- power plants and CHP
- heavy industry: mines, steel plants, coking
- light industry: paper, textile, domestic appliances manufacturing.

And in infrastructure:

- datacentr
- airpor
- office
- shopping centr
- hospitals.


## CHARACTERISTICS

- Simple installation system, which does not require the use of complicated manufacturing processes and tools, which significantly shortens manufacturing time,
- thoughtful design composed of repeatable elements, which enables mass manufacturing of switchgear
- ease of modification (reconstruction and expansion), which allows the adaptation of the device to changing
- depending on the requirements, it is possible to manufacture switchgears with primary busbars at the top or in the rear of the cabinets, which enables the feeding of cables both from the top and from the bottom of the switchgear
- withdrawable module technology ensures rapid replacement of devices without having to shut down entire switchgear
- easy servicing and maintenance, possibility of placing various functional modules in the cabinet
- the switchgear has been thoroughly tested according to the newest PN-EN 61439-1/2 standard, which focuses on operator safety
- 30 years of experience in switchgear design and development has resulted in the introduction of a wide range of safety improv
- only high-quality materials and devices (meeting the requirements of European standards) are used.


## BASIC TECHNICAL DATA

## Compliance with standards:

The ZR-W type switchgear meets the requirements of the following standards:

- PN-EN 61439-1 - „Low-voltage switchgear and controlgear assemblies. General rules",
- PN-EN 61439-2 - „Low-voltage switchgear and controlgear assemblies. Power switchgear and controlgear assemblies.",
- PN-EN 60529 - „Degrees of protection provided by enclosur
- PN-EN 62262 - „Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)"


## Electrical data:

$\left.\begin{array}{|l|c|}\hline \text { Rated insulation voltage } & \begin{array}{c}690 \mathrm{~V} / 1000 \mathrm{~V} / 1500 \text { V' } \mathrm{AC} \\ \text { up to } 1500 \mathrm{~V} \mathrm{DC}\end{array} \\ \hline \text { Rated connection voltage } & 400 \mathrm{~V} / 500 \mathrm{~V} / 690 \mathrm{~V} / 1000 \mathrm{~V}^{2} \mathrm{AC} \\ \text { do } 1200 \mathrm{~V} \mathrm{DC}\end{array}\right]$

| Mechanical data: |  |
| :---: | :---: |
| Dimensions | Width from 400 to 1200 mm <br> Height 1900 / 2200 mm Depth 600 / 800 / 1000 mm |
| IP degree of protection | from IP20 to IP54 |
| IK degree of protection | up to IK 10 |
| Form of compartments (depending on bay type) | from 2A to 4B |
| Surface protection | Framework: 2.5 mm zinc and galvanized steel sheet Covers (doors): $1.5 / 2 \mathrm{~mm}$ painted sheet ${ }^{3)}$ Font panels: 1.5 mm painted steel sheet |
| Powder painting | RAL 7035 as standard, other colours on request |
| Plastic components | Halogen-free, self-extinguishing, fire-resistant, CFC-free |
| Service conditions |  |
| Ambient temperature <br> - Lower limit of ambient temperature <br> - Upper limit of ambient temperature <br> - Average daily temperatures over 24 hours | $\begin{gathered} -5^{\circ} \mathrm{C}\left(-25^{\circ} \mathrm{C}\right)^{4} \\ +40^{\circ} \mathrm{C} \\ \text { from }-5^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} \end{gathered}$ |
| Relative humidity | up to $50 \%$ (at a temp. $40^{\circ} \mathrm{C}$ ) |
| Installation altitude | up tp 1000 m a.s.l. |
| Atmosphere at the place of installation | free from chemically aggressive and conducting dust, fumes and gases |

## At the customer's request it is possible to design a switchgear adapted to other conditions

## Note:

${ }^{1)}$ Up to 1500 V AC in custom design.
${ }^{2}$ ) Up to 1000 V AC in custom design.
${ }^{3}$ ) Other design technology to be agreed with the manufacturer.
${ }^{4}$ ) Depending on the devices used.

## SWITCHGEAR DESIGN

Main mechanical design of the switchgear consists of:

- framework made of zinc-coated pr
- functional compartment divider elements, such as vertical and horizontal par
- external covers (doors/side and back walls/roof/floor).

Depending on the method of production, cells can be partially or entirely covered. The door, front covers and back walls can be equipped with ventilation grilles. Inspection windows installed on the door are made from multi-layered glass or plastics.

## Framework

Internal partitions
External covers


Depending on the requirements and switchgear design cells are divided into three functional compartments.



Structure dimensions
Height
$(\mathrm{mm})$

## Width

Depth

(mm)
(mm)

## BUSBARS

Classification of busbars in the ZR-W switchgear according to their function:

- primar
- distribution busbars,
- protective earth and neutral busbars (PE+N/PEN)


## PRIMARY BUSBARS

## Primary busbars located at the top of the cabinet

Primary phase busbars and primary neutral $N$ busbars (protective earth-neutral PEN for 4 -wire system) are located in the busbar compartment at the top of the switchgear. Primary protective earth PE busbars (for 5-wire system) are located in the front in the lower part of the cabinet along its face.

## Primary busbars in a top mounted system




DISTRIBUTION BUSBARS


Vertical distribution busbars are located in the busbar compartment, on the left side of the switchgear cabinet. They are used for connecting fixed, plug-in and withdrawable outgoing units. A neutral N busbar and protective earth PE busbar (for 5-wire cable system) or a protective earth neutral PEN (for 4-wire cable system) are then arranged vertically in the connection compartment.

## Primary busbars located at the rear of the cabinet

Primary phase busbars and primary neutral N busbars (protective earth-neutral PEN for 4-wire system) are located in the busbar compartment at the rear of the switchgear.

Depending on the configuration, they are placed in its bottom or its top part. Primary protective earth PE busbars (for 5-wire system) are located in the front in the lower part of the cabinet along its face.


Busbars adapted to strip-type fuse switch disconnectors installation

Busbars located at the front of the switchgear cabinet are used for direct installation of strip-type fuse switch disconnectors.

## TYPES OF BAYS

The ZR-W type switchgear is composed of a combination of 9 bay types

- Circuit breakerbay
- Buscouplerbay
- Bay with vertical fuse switch disconnect
- Bay with horizontal fuse switch disconnect
- Outgoing bay
- Free installation bay
- Cassettebay
- Capacitorbankbay
- Cornerbay.


Technical data of the circuit breaker bay

${ }^{\text {* }}$ Solution only for bays with busbars at the back.

Minimum bay dimensions depending on the installed devices

| Device type | Rated current | Bay width <br> (3-pole devices) | Bay width <br> (4-pole devices) | Bay depth |
| :--- | :--- | :--- | :--- | :--- |
| Fixed or withdrawable <br> compact circuit breaker | Up to 1600 A | $400^{*} / 500 \mathrm{~mm}$ | 600 mm | 600 mm |
| Fixed or withdrawable <br> power circuit breaker | Up to 1600 A | 600 mm | 800 mm | 600 mm |
| Stationary compact circuit breaker | From 2000 to 3200 A | $600^{*} / 700 \mathrm{~mm}$ | 800 mm | 600 mm |
| Withdrawable compact circuit breaker | From 2000 to 2500 A | $600^{*} / 700 \mathrm{~mm}$ | 800 mm | 60 mm |
| Stationary compact circuit breaker | 4000 A | 800 mm | 900 mm | 800 mm |
| Withdrawable compact circuit breaker | From 3200 to 4000 A | 800 mm | 900 mm | 800 mm |
| Fixed or withdrawable | From 5000 to 6300 A | 1000 mm | 1200 mm | 1000 mm |
| power circuit breaker |  |  |  |  |

*) Solution only for bays with busbars at the back.


Technical data of the bus coupler bay

| Area of application | Coupler between sections |  |  |
| :---: | :---: | :---: | :---: |
| Ingress protection rating | Ventilated up to IP41 Non-ventilated up to IP54 |  |  |
| Bay dimensions | Height Width Depth | $\begin{aligned} & 1900 / \\ & 600^{*} / \\ & 600 / 8 \end{aligned}$ | $\begin{aligned} & 200 \mathrm{~mm} \\ & 0^{*} / 800 / 900 / 1000 / 1100 / 1200 \mathrm{~mm} \\ & 0 / 1000 \mathrm{~mm} \end{aligned}$ |
| Possibility of installing devices | Air circuit breaker up to 6300 A Compact circuit breaker up to 1600 A |  |  |
| Form of compartments | Form 2B / 3A / 4B |  |  |
| Bay construction method |  |  |  |
| Primary busbars placed at the top | Bay depth depends on the incoming bay depth |  | Busbar connection of two upper circuits using a riser compartment |
| Primary busbars placed at the back | Bay depth depends on the incoming bay depth |  | Connection of the upper busbar circuit with the bottom busbar circuit |

## ${ }^{\text {* }}$ Solution only for bays with busbars at the back.

## Minimum bay dimensions depending on the installed devices

| Device type | Rated current | Bay width <br> (3-pole devices) | Bay width <br> (4-pole devices) | Bay depth |
| :--- | :--- | :--- | :--- | :--- |
| Fixed or withdrawable <br> compact circuit breaker | Up to 1600 A | 600 mm | 700 mm | 600 mm |
| Fixed or withdrawable power <br> circuit breaker | Up to 1600 A | $700^{*} / 800 \mathrm{~mm}$ | 800 mm | 600 mm |
| Stationary power circuit breaker | From 2000 to 3200 A | 900 mm | 1000 mm | 1000 mm |
| Withdrawable power circuit breaker | From 2000 to 2500 A | 900 mm | 1200 mm | 600 mm |
| Stationary power circuit breaker | 4000 A | 1100 mm | 1200 mm | 600 mm |
| Withdrawable power circuit breaker | From 3200 to 4000 A | 1100 mm | 800 mm |  |
| Fixed or withdrawable power |  |  |  |  |
| circuit breaker | From 5000 to 6300 A | 1200 mm | 800 mm |  |

${ }^{*}$ ) Solution only for bays with busbars at the back.


Technical data of the bay with vertical fuse switch disconnectors

${ }^{*}$ ) Solution only for bays with busbars at the back.

## Minimum bay dimensions depending on the installed devices

| Bay width | $400{ }^{*}$ | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of 00 size devices | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
| Number of 1 size devices | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| Number of 2 size devices | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | - |
| Number of 3 size devices | 3 | 4 | 5 | 6 | 7 |  | - | - | - |

[^1]

Technical data of the bay with vertical fuse switch disconnectors

| Area of application | Outgoing on fuse switch disconnectors |  |
| :---: | :---: | :---: |
| Ingress protection rating | Ventilated up to IP2X Non-ventilated up to Ip54 |  |
| Bay dimensions | Height Width Depth | $\begin{aligned} & 1900 / 2200 \mathrm{~mm} \\ & 1100 / 1200 \mathrm{~mm} \\ & 600 / 800 / 1000 \mathrm{~mm} \end{aligned}$ |
| Possibility of installing devices | Strip-type fuse switch disconnectors, size 00 up to 3 |  |
| Form of compartments | 2B / 3B / 4B form |  |
| Bay construction method |  |  |
| Primary busbars placed at the top | Bay depth 600 | Connection: <br> - cables from the bottom, up to 3 cables to each switch disconnector, cable cross-sections according to the manufacturer's catalogue |
| Primary busbars placed at the back | Bay depth 600 | Connection: <br> - cables from the bottom or top, up to 3 cables to each switch disconnector, cable cross-sections according to the manufacturer's catalogue |
| Every placement of primary busbars | Bay depth 800 / 1000 | Connection: <br> - cables from the bottom or top, up to 3 cables to each switch disconnector, cable cross-sections according to the manufacturer's catalogue |

## Minimum bay dimensions depending on the installed devices

| Bay width | 1000 mm | 1200 mm |
| :--- | :--- | :--- | :--- |
| Number of 00 size devices | up to 15 | up to 19 |
| Number of 1 size devices | up to 10 | up to 15 |
| Number of 2 size devices | up to 9 | up to 11 |
| Number of 3 size devices | up to 6 | up to 7 |

[^2]

## Technical data of the outgoing bay

| Area of application | Outgoings on box fuse switch disconnectors, compact circuit breakers or motor modules |  |
| :---: | :---: | :---: |
| Protection rating | Ventilated up to IP2X Non-ventilated up to IP54 |  |
| Bay dimensions | Height Width Depth | $\begin{aligned} & 1900 / 2200 \mathrm{~mm} \\ & 1000 / 1200 \mathrm{~mm} \\ & 600 / 800 / 1000 \mathrm{~mm} \end{aligned}$ |
| Possibility of installing devices | Box fuse switch disconnectors <br> Compact circuit breakers up to 800 A <br> Motor power supply systems (protection/contactor) <br> Modular device |  |
| Form of compartments | 2B / 3B / 4B form |  |
| Bay construction method |  |  |
| Primary busbars placed at the top | Bay depth 600 | Connection: <br> - cables from the bottom, up to 2 cables to each device, cable cross-sections according to the manufacturer's catalogue |
| Primary busbars placed at the back | Bay depth 600 | Connection: <br> - cables from the bottom or top, up to 2 cables to each switch disconnector, cable cross-sections according to the manufacturer's catalogue |
| Every placement of primary busbars | Bay depth 800 / 1000 | Connection: - cables from the bottom or top, up to 2 cables to each switch disconnector, cable cross-sections according to the manufacturer's catalogue |



## Possibility of installing devices

| Bay height | The device may be installed in a unit |
| :--- | :--- |
| 150 mm | Stationary compact circuit breaker up to 160 A <br> Box fuse switch disconnector up to 160 A <br> Modular device |
| 200 mm | Plug-in compact circuit breaker up to 160 A <br> Plug-in stationary compact circuit breaker up to 250 A |
| 250 mm | 3-pole stationary compact circuit breaker up to 630 A <br> 3-pole plug-in or withdrawable compact circuit breaker up to 400 A <br> 3-pole box fuse switch disconnector up to 400 A |
| 300 mm | Four fuse switch disconnectors or compact circuit breakers installed vertically (current $\leq 160 \mathrm{~A})$ <br> Plug-in stationary compact circuit breaker up to 800 A <br> 3-pole plug-in or withdrawable compact circuit breaker up to 630 A <br> Electrical energy meters <br> Various devices |

In a cabinet with a height of 2200 mm the device installation area is 1900 mm In a cabinet with a height of 1900 mm the device installation area is $\mathbf{1 5 0 0} \mathbf{~ m m}$


| Technical data of the free instalation bay |  |  |
| :---: | :---: | :---: |
| Area of application | The bay to be equipped by the customer |  |
| Protection rating | Ventilated up to Ip41 Non-ventilated up to IP54 |  |
| Bay dimensions | Height Width Depth | $\begin{aligned} & 1900 / 2200 \mathrm{~mm} \\ & 400^{*} / 500 / 600 / 700 / 800 / 900 / 1000 / 1100 / 1200 \mathrm{~mm} \\ & 600 / 800 / 1000 \mathrm{~mm} \end{aligned}$ |
| Possibility of installing devices | The bay is designed for the installation of customer's devices, such as: frequency converters, softstarts, non-typical control instrumentation, etc. |  |
| Form of compartments | 2A form |  |
| Bay construction method |  |  |
| Primary busbars placed at the top | Bay depth 600 mm | Connection: <br> - cables from the bottom, cable cross-sections according to the client specification |
| Primary busbars placed at the back | Bay depth 600 mm | Connection: <br> - cables from the bottom or top, cable cross-sections according to the client specification |
| Every placement of primary busbars | Bay depth 800 / 1000 mm | Connection: <br> - cables from the bottom or top, cable cross-sections according to the client specification |

${ }^{*}$ ) Solution only for bays with busbars at the back.


Cassette type ZR-W switchgear is intended for installation in industrial plants and facilities where ensuring the continuity of power supply and minimisation of time needed for equipment inspection is a priority. Examples include technological lines for steel manufacturing and processing, glass casting processes, assembly lines for cars, TVs, washing machines etc., generally all applications where the failure of a single device causes the entire line to stop and the company to bear losses. The use of cassette type solutions eliminates the need to deenergise the switchgear when one device fails, and minimises the time needed for the inspection, upgrade or expansion of the switchgear.

## High flexibility of solutions

The possibility of using 3-pole or 4-pole devices by various manufacturers, such as: ABB, Eaton, Siemens, Schneider, Socomec.
The ZR-W cassette solution is proprietary to our company and is independent from any manufacturer of electric devices, which enables the use of devices by any manufacturer within the cassettes' design capacities.

## Arc safe vertical electricity distribution system.

The construction of the vertical busbar circuit ensures that the current circuits are insulated from each other, the power distribution elements are protected against touch, and elements which supply cassettes are equipped with shutters which are automatically closed after the cassette is removed from the bay, which prevents any objects that could cause a short circuit from entering the busbar circuit, while simultaneously ensuring complete safety of the user even with the cassette removed from the bay.


## An arc safe system of contacts

Main contacts of the cassette system are insulated, and their connection to vertical incoming busbars only occurs when the cassette is inserted into the bay and locked, which prevents an arc short when the contacts are moving.


Innovative system of contacts which increase contact force during closure


Pressure contact system
It was designed in cooperation with the Fraunhofer Institute and causes an increase in the contacts' pressure force during closure as a result of electrodynamic force, which ensures a constant contact pressure even with worn contact elements.

## TECHNICAL DATA OF THE CASSETTE BAY

Compliance with standards.
Sets of switchgears verified in accordance with the standards:
PN-EN 61439-1
PN-EN 61439-2

## ELECTRICAL DATA

## Rated impulse

| Rated insulation voltage Ui |  |  |
| :--- | :--- | :--- |
| - main circuits |  |  |
| - auxiliary circuits |  | 1000 V AC |
| Rated connection voltage Ue | 500 V |  |
| Rated impulse withstand voltage Uimp | do 690 V AC |  |
| Overvoltage category | 8 kV |  |
| Level of contamination | Rated current le | III / IV |
| Rated frequency | Rated short-time withstand current Icw | 3 |
| Rated current | Rated peak withstand current Ipk | $50 / 60 \mathrm{~Hz}$ |
|  | 1250 A |  |
| Distribution busbars | 65 kA |  |
| Resistance to electric arc effects |  | 150 kA |

"Arc fault free" design prevents the occurrence of an arc fault.

| HANICAL DATA |  |
| :---: | :---: |
| Dimensions |  |
| Support cabinet and construction | 2200 mm |
|  | 1650 mm |
|  | 1000, 1100, 1200 mm |
|  | $600,800,1000 \mathrm{~mm}$ |
| Surface protection |  |
| Supporting structures (profiles) | Zinc or Aluzinc coated |
| Ingress protection rating |  |
| Depending on installation conditions | up to IP30 |
| Plastic components |  |
| Halogen-free, self-extinguishing, fire-resistant, CFC-free |  |
| Form of compartments |  |
| Depends on the solution adopted | from 3B to 4 B |
| Cable compartment |  |
| Cable connection | right side of the bay |
| Cable outlet | bottom or top |

OPTIONAL ADDITIONS

| Painting | Special colour on request | Standard RAL 7035 |
| :--- | :---: | :---: |
| SERVICE CONDITIONS |  |  |
| Normal |  |  |
| Ambient temperature | lower limit of ambient temperature | $-5^{\circ} \mathrm{C}$ |
| Ambient temperature | lower limit of ambient temperature | $+40^{\circ} \mathrm{C}$ |

## WARNING!

At the customer's request it is possible to design a switchgear adapted to other service conditions than specified in the table.

## CASSETTE BAY DESIGN

The structural module of the cassettes is a size of $1 \mathrm{M}=75 \mathrm{~mm}$, imposed by the spacing of connections in the distribution busbars, available installation area is $1650 \mathrm{~mm}-22 \mathrm{M}$

|  | 150 | 300 | 450 | 600 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1650 |  |  |  |  | 22M |
| 1575 | 3M/4 | 3M/4 | $3 \mathrm{M} / 4$ | 3M/4 | 21M |
| 1500 |  |  |  |  | 20M |
| 1425 |  |  |  |  | 19M |
| 1350 |  |  |  |  | 18M |
| 1275 |  |  |  |  | 17M |
| 1200 |  |  |  |  | 16M |
| 1125 |  |  |  |  | 15M |
| 1050 |  |  |  |  | 14M |
| 975 |  |  |  |  | 13M |
| 900 |  |  |  |  | 12M |
| 825 |  |  |  |  | 11M |
| 750 |  |  |  |  | 10M |
| 675 |  |  |  |  | 9M |
| 600 |  |  |  |  | 8M |
| 525 |  |  |  |  | 7M |
| 450 |  |  | 8M |  | 6M |
| 375 |  |  |  |  | 5M |
| 300 |  |  |  |  | 4M |
| 225 |  |  |  |  | 3M |
| 150 |  |  |  |  | 2M |
| 75 |  |  |  |  | 1M |

Table of full cassette dimensions

| Cassette dimension | Cassette height [mm] |  | Cassette power contacts used |  |
| :---: | :---: | :---: | :---: | :---: |
| 2 M | 150 |  |  |  |
| 3 M | 225 | 160 A |  |  |
| 4 M | 300 | 160 A |  |  |
| 5 M | 375 | 160 A | 315 A |  |
| 6 M | 450 | 160 A | 315 A |  |
| 7 M | 525 | 160 A | 315 A |  |
| 8 M | 600 |  | 315 A | 630 A |

## FULL-SIZE CASSETTE DESIGN

The cassette is composed of a cassette body and installation plate, on which devices are installed, cassette doors which are connected to the frame structure and a mechanism which activates the cassette contacts.


Operation of switching on cassette contacts is performed with a special key, used to switch on control or power contacts:

## "TEST" position

By inserting the key in the opening on the left side and turning it control contacts are switched on, and the cassette position indicator changes colour from green to blue.

## "OPERATION" position

By inserting the key in the opening on the right side and turning it control and power contacts are switched on and the cassette position indicator changes colour from greento red.


## CONSTRUCTION OF HALF-SIZE AND QUARTER-SIZE CASSETTES

The switchgear may use "quarter-size" 3M/4 cassettes - 4 cassettes in a single row, and "half-size" $2 \mathrm{M} / 2$ or $3 \mathrm{M} / 2$ cassettes - 2 cassettes in a single row.

In order to install half-size or quarter-size cassettes in place of a full-size cassette, a half-size or quarter-size cassette adapter should be inserted and connected with busbars using a power supply connector.


Mechanism for activation to a TEST OPERATION position


## TYPICAL SOLUTIONS FOR CASSETTES

The size of a cassette appropriate for a given solution depends on the type of consumer, equipment and power (or current) of the consumer supplied from the cassette.

## Type of consumer

## Cassettes are used to supply the following types of consumers:

| CP - (Cable protection) | cassette intended to supply a non-inductive consumer, such as another switchgear, plug sockets, <br> heaters, lighting etc. |
| :--- | :--- |
| DOL - (Direct on line) | cassette intended to supply direct start motor feeders |
| RS - (reverese starter) | cassette intended to supply bidirectional motor feeders |
| DSS - (Delta - Star starter) | cassette intended to supply motors with a star delta starting system |
| SOFT - (sofstarter) | cassette equipped with a soft-starter |
| FC - (frequency converter) | cassette equipped with a frequency converter |

## Equipment

Cassettes may be equipped with fuse switch disconnectors with rotary drive, compact circuit-breakers, motor circuit-breakers, power contactors and thermal relays. Current transformers may be installed for metering purposes.

The standard equipment of a DOL type full cassette is:
Fuse switch disconnector + Contactor + Thermal relay or circuit breaker + contactor
In half-size and quarter-size cassettes additional equipment includes an operational switch for design considerations.

## Manufacturers

Devices made by the following manufacturers may be used in cassettes manufactured by ZPUE S.A.: ABB, Eaton, Siemens, Schneider, Socomec.

## Cassette power/current

If the cassette is of a CP type it is adapted based on cassette current, for other solutions it is adapted according to the power of the connected motor.

## Additional equipment

## Cassettes may be additionally equipped with:

- Coding element - prevents the possibility of placing the cassette on a different shelf than planned;
- Electrical signalling of the cassette position (OPERATION and TEST position signalling contacts);
- Interlock preventing the activation of the cassette contacts with an active main device;
- Ammeters;
- Network parameter meters etc.


## CONTROL OPTIONS

All cassettes are equipped with modular control plugs which enable connection of cables in PROFIBUS / MODBUS / ETHERNET standard, due to availability of space putting controllers in a cassette is possible only in full-size cassettes.

## Quarter-size cassette with two signalling lamps



Due to size, in a quarter-size cassette in addition to the activating switch disconnector the placement of only two signalling lamps / buttons is possible, 22 mm hole diameter.

As standard, ZPUE S.A. uses illuminated green / red buttons. Buttons are used to activate and deactivate cassettes, illumination of the green button means a readiness for activation of a contactor-equipped cassette, and illumination of the red button means a failure.

## Half-size cassette with three signalling lamps



Due to size, in a half-size cassette in addition to the activating switch disconnector the placement of only three signalling lamps / buttons is possible, 22 mm hole diameter.

As standard ZPUE S.A uses green / red buttons and an integrated signalling lamp with "readiness", "operation" and "failure" LEDs.

## Full-size cassette with network analyser



In a full-size cassette on the left size there is a space for the installation of any lamp-based signalling system, an ammeter, a network analyser etc.

## SELECTION OF CASSETTES FOR CONSUMER POWERS

Standard cassette size is $1 \mathrm{M}=75 \mathrm{~mm}$ module.

## Half-size and quater-size cassettes

| Power <br> [kW]Power <br> [A] | CP |  |  | DOL. |  | RS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0,37 | 0,7 | $3 M / 4$ |
| 0,55 | 1,0 | $3 M / 4$ |
| 0,75 | 1,5 | $3 M / 4$ |
| 1,10 | 2,0 | $3 M / 4$ |
| 1,50 | 3,0 | $3 M / 4$ |
| 2,20 | 4,0 | $3 M / 4$ |
| 3,00 | 6,0 | $3 M / 4$ |
| 4,00 | 8,0 | $3 M / 4$ |
| 5,50 | 10,0 | $3 M / 4$ | $3 M / 2$ | $3 M / 2$ |
| 7,50 | 15,0 | $3 M / 4$ | $3 M / 2$ | $3 M / 2$ |
| 11,00 | 20,0 | $3 M / 4$ | $3 M / 2$ | $3 M / 2$ |
| 15,00 | 32,0 | $2 M / 2$ | $2 M / 2$ | $3 M / 2$ |
| 18,50 | 40,0 | $2 M / 2$ | $2 M / 2$ | $3 M / 2$ | $3 M / 2$ | BRAK | BRAK |
| 22,00 | 50,0 | BRAK | $2 M / 2$ | BRAK | $3 M / 2$ | BRAK | BRAK |

Full-size cassettes

| Moc [kW] | Prad [A] | CP |  | DOL |  | RS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rozł. | Wyl. | Rozł. | Wył. | Rozł. | Wył. |
| 0,37 | 6 | 2M | 2M | 2M | 2M | 2M | 2M |
| 0,55 | 6 | 2M | 2M | 2M | 2M | 2M | 2M |
| 0,75 | 6 | 2M | 2M | 2M | 2M | 2M | 2M |
| 1,10 | 6 | 2M | 2M | 2M | 2M | 2M | 2M |
| 1,50 | 10 | 2M | 2M | 2M | 2M | 2M | 2M |
| 2,20 | 16 | 2M | 2M | 2M | 2M | 2M | 2M |
| 3,00 | 16 | 2M | 2M | 2M | 2M | 2M | 2M |
| 4,00 | 20 | 2M | 2M | 2M | 2M | 2M | 2M |
| 5,50 | 32 | 2M | 2M | 2M | 2M | 2M | 2M |
| 7,50 | 40 | 2M | 2M | 2M | 2M | 3M | 3M |
| 11,00 | 50 | 2M | 2M | 2M | 2M | 3M | 3M |
| 15,00 | 63 | 3M | 3M | 3M | 3M | 3M | 3M |
| 18,50 | 80 | 3M | 3M | 3M | 3M | 3M | 3M |
| 22,00 | 100 | 3M | 3M | 3M | 3M | 4M | 4M |
| 30,00 | 125 | 3M | 3M | 4M | 4M | 4M | 4M |
| 37,00 | 160 | 3M | 3M | 4M | 4M | 4M | 4M |
| 45,00 | 200 | 2M | 2M | 4M | 4M | 6M | 6M |
| 55,00 | 250 | 4M | 4M | 4M | 4M | 6M | 6M |
| 75,00 | 315 | 4M | 4M | 6M | 6M | BRAK | BRAK |
| 90,00 | 400 | 4M | 4M | 6M | 6M | BRAK | BRAK |
| 110,00 | 250 | 4M | 4M | 8M | 8M | BRAK | BRAK |
| 132,00 | 400 | 6 M | 6M | 8M | 8M | BRAK | BRAK |



Technical data of the capacitor bank bay


## CAPACITOR BANK BAY



Technical data of the corner bay


GENERAL CONDITIONS FOR LOCATION AND PLACEMENT OF THE SWITCHGEAR

## Guidelines for switchgear location



## Placement

The foundation must be level, and its unevenness may not exceed $1 \mathrm{~mm} / 1000 \mathrm{~mm}$.
The switchgear may be placed directly on the floor, on duct frame or on steel structure of the facility.

External feed-ins. Usable space for feeding the cables from the bottom of the cabinet

Fig. Cabinet without a connection compartment
Fig. Cabinet with a connection compartment


| $G$ | $a$ |
| :---: | :---: |
| 600 | 330 |
| 800 | 430 |
| 1000 | 530 |

Fig. Required width of the duct under the switchgear and position of the switchgear mounting holes on the duct frame compared to the transport sets.


| L | a |
| :---: | :---: |
| 2000 | 1000 |
| 2200 |  |
| 2400 | 1200 |
| 2600 |  |
| 2800 | 1200 |
| 3000 |  |

L - length of the transport set (400-3000)
$\mathrm{S}_{\mathrm{k}}$ - duct width $\mathrm{S}_{\mathrm{k}}=(\mathrm{G}-100)$
G - depth of the switchgear cage $(600,800,1000)$

On the floor


Fig. Switchgear placement with a load-bearing frame
On the floor


## Low Voltage switchgear

## 3 / INSTAL-BLOK



## INTRODUCTION

The INSTAL-BLOK indoor cabinet system manufactured by ZPUE S.A. is a state of the art, modular solution based on a framework design with maintenance-free bolt fasteners, which enable simple and flexible installation of low voltage controlgear, switchgear and protection devices and other accessories in order to meet power engineering, industrial automation and other industry needs.

## CHARACTERISTICS

- Enclosure made of 1.5 mm thick steel sheet. IK10 mechanical impact resistance,
- removable side and back walls, and the possibility of using an enclosure with front panels without a door,
- possibility of combining cabinets in sets,
- protection rating from IP20 to IP66 with the use of appropriate seals,
- possibility of manufacturing of cabinets from stainless steel (solutions for the food industry),
- three-point locking system, which assures good fit of the door to the cabinet and adequate tightness. The lock can be equipped with a door lock cylinder or padlock attachment.


## BUSBAR SYSTEM

INSTAL-BLOK is designed for the installation of busbars from 250 to 1600 A (other currents after agreement with the manufacturer).

## SWITCHGEAR PURPOSE

INSTAL-BLOK is designed for the use as:

- industrial switchgears for demanding conditions of operation (pollution, high IP rating),
- switchgear for office buildings, public facilities and others, due to the possibility of front panel installation,
- auxiliary switchgear for alternating and direct current,
- control cabinets with installed inverters, soft-starters, etc.



## Cabinet type is marked with a code for cabinet

dimensions:

| Width $[\mathrm{mm}]$ |  |
| :---: | :---: |
| Value |  |
| 400 | Designation |
| 500 | 04 |
| 600 | 05 |
| 700 | 06 |
| 800 | 07 |
| 900 | 08 |
| 1000 | 09 |
| 1100 | 10 |
| 1200 | 11 |
|  | 12 |


|   <br> Value Designation <br> 1000 10 <br> 1200 12 <br> 1400 14 <br> 1600 16 <br> 1800 18 <br> 2000 20 |  |
| :---: | :---: |


| Depth $[\mathrm{mm}]$ <br> Value <br> 400 <br> 600 <br> 800 <br> 1000 |  |
| :---: | :---: |
|  | 04 |
|  | 06 |

Note:
At the customer's request it is possible manufacture a cabinet with other dimensions.

INSTAL-BLOK 04-12-06


## BASIC TECHNICAL DATA

## Compliance with standards:

The RN-W type switchgear meets the requirements of the following standards:

- PN-EN 61439-1 - „Low-voltage switchgear and controlgear assemblies. General rules",
- PN-EN 60529-„Degrees of protection provided by enclosures (IP Code)",
- PN-EN 62262 - „Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)".

| Ecotrical data |  |
| :---: | :---: |
| Rated insulation voltage | $690 \mathrm{~V} / 1000 \mathrm{~V} \mathrm{AC}^{1)}$ up to 1500 V DC |
| Rated connection voltage | $400 \mathrm{~V} / 500 \mathrm{~V} / 690 \mathrm{~V} \mathrm{AC}{ }^{2)}$ up to 1200 V DC |
| Test impulse withstand voltage | 8 kV |
| Rated frequency | 50 Hz |
| Rated current of the switchgear | from 250 to $1600 \mathrm{~A}^{3}$ |
| Rated short-time withstand current | up to 30 kA (1s) |
| Rated peak withstand current | up to 63 kA |
| Mechanical data |  |


| Dimensions | Width - from 400 to 1200 mm <br> Height - from 1000 to 2000 mm <br> Depth - from 400 to 1000 mm |
| :---: | :---: |
| IP protection rating | from IP20 to IP66 |
| IK protection rating | up to IK 10 |
| Surface protection | Framework: 1.5 mm Aluzinc or painted steel sheet in special design from stainless steel Covers: 1.5 mm Aluzinc or painted steel sheet in special design from stainless steel <br> - Front panels: plastic |
| Powder painting | standard - RAL 7035 other colours on request |
| Plastic components | Halogen-free, self-extinguishing, fire-resistant, CFC-free |

## Service conditions:

Ambient temperature

- Lower limit of ambient temperature
- Upper limit of ambient temperature
- Average daily temperatures over 24 hours

Relative humidity
Installation altitude

Atmosphere at the installation place

Ambient temperature
$-5^{\circ} \mathrm{C}\left(-25^{\circ} \mathrm{C}\right)^{4}$
$+40^{\circ} \mathrm{C}$
$-5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$
up to $50 \%$ (at a temp. $40^{\circ} \mathrm{C}$ )
up to 1000 m a.s.l.
free from chemically aggressive and conducting dust, fumes and gases

## At the customer's request it is possible to design a switchgear adapted to other conditions

[^3]
## DEVICES THAT MAY BE INSTALLED IN THE INSTAL-BLOK SWITCHGEAR BAYS

Due to the very wide range of possible applications of the INSTAL-BLOK switchgear, the catalogue presents only the most frequently used solution.

## BAYS WITH COUPLER OR POWER CIRCUIT BREAKER, FROM 630 T0 1600 A



| Area of application | Incoming bay <br> Outgoing bay <br> Bus coupler bay |
| :--- | :--- |
| Ingress protection rating | IP20 without doors <br> Up to IP66 with doors |
| Bay dimensions | Height: from 1800 to 2000 mm <br> Width: from 500 to 1000 mm <br> Depth: from 400 to 800 mm (depending on the device type) |
| Possibility of installing | - stationary or withdrawable power circuit breaker from 630 to 1600 A <br> - stationary or withdrawable compact circuit breaker, with manual or motor drive from 630 <br> - box fuse switch disconnector from 630 to 1600 A |
| - snap action disconnector from 630 to 1600 A |  |
| Additional devices | - place for installation of metering panel <br> - drive control automation <br> - surge arrester etc. |
| Connection | From the top: bus duct / busbar / cable <br> From the bottom: bus duct / busbar / cable |
| Others | The possibility of installation of small modular devices |

INCOMING/OUTGOING BAYS


| Area of application | Incoming bay, Outgoing bay |
| :--- | :--- |
| Ingress protection rating | Ip20 without doors <br> Up to IP66 with doors |
| Bay dimensions | Height: from 1800 to 2000 mm <br> Width: from 500 to 1000 mm <br> Depth: from 400 to 800 mm (depending on the device type) |
| Possibility of installing | Incoming feeders: <br> - stationary or withdrawable compact circuit breaker, with manual or motor drive from 630 to 1600 A <br> - box fuse switch disconnector from 630 to 1600 A <br> - snap action disconnector from 630 to 1600 A <br> Outgoing feeders: <br> - fuse switch disconnectors up to 630 A |
| - compact circuit breakers up to 630 A |  |$|$| - modular devices |
| :--- |



| Area of application | Outgoing bay with cable duct |
| :--- | :--- |
| Ingress protection rating | Ip20 without doors <br> Up to IP66 with doors |
| Bay dimensions | Height: from 1800 to 2000 mm <br> Width: from 800 to 1200 mm <br> Depth: from 400 to 800 mm (depending on the device type) |
|  | - compact circuit breakers up to 630 A <br> - box fuse switch disconnectors up to 630 A <br> - modular devices |
| Possibility of installing | - motor blocks (protection, contactor, relay) up to 250 A <br> devices |
| - reversing motor blocks |  |
| - star delta motor blocks |  |
| - frequency converters |  |



| Area of application | Bays for the installation of meters or control instrumentation |
| :--- | :--- |
| Ingress protection rating | Ip20 without doors <br> Up to IP66 with doors |
| Bay dimensions | Height: from 1800 do 2000 mm <br> Width: from 600 do 1000 mm <br> Depth: from 400 do 800 mm (depending on the device type) |
| Possibility of installing | Devices installed on a mounting plate: <br> - fuse switch disconnectors up to 160 A <br> - compact circuit breakers up to 160 A <br> - metering and ordinary terminal strips <br> - programmable controllers |
| devices | Devices installed on a swing frame: <br> - full-size and TH35 rail mounted electricity meters <br> - network analysers <br> - ammeters <br> - voltmeters <br> - other instrumentation and control equipment |
| The possibility of installing terminal strips in various configurations |  |
| Additional devices | From the top: cable <br> From the bottom: cable |
| Connection | A cable duct can be attached to the bay |
| Others |  |



| Area of application | Bays for the installation of large-sized equipment structures |
| :--- | :--- |
| Ingress protection rating | IP20 without doors <br> Up to IP66 with doors |
| Bay dimensions | Height: from 1800 to 2000 mm <br> Width: from 400 to 1000 mm <br> Depth: from 400 to 800 mm (depending on the device type) |
| Possibility of installing | - frequency converters <br> - soft-starts <br> - high-mass transformers <br> - direct current batteries <br> $-19 "$ (rack) devices, after installation of guide bars |
| Connection | From the top: cable <br> From the bottom: cable |
| Others | A cable duct can be attached to the bay <br> An air conditioning system may be provided for the bay |

CAPACITOR BANK BAYS


| Area of application | A bank for compensation of capacitive reactive power: <br> - capacitor <br> - capacitor and reactor |
| :--- | :--- |
| Ingress protection rating | From IP20 to IP54 |
| Bay dimensions | Height: 2000 mm <br> Width: from 500 to 800 mm <br> Depth: from 400 to 600 mm |
| Possibility of installing | -3 to 6 capacitor stages with a power of 60 to 200 kvar <br> or capacitor and reactor stages from 60 to 100 kvar <br> -4 to 12 capacitor stages with a power of 120 to 260 kvar <br> devices up to 8 capacitor and reactor stages with a power up to 160 kvar <br> Connection |
| From the top: cable |  |
| From the bottom: cable |  |
| Bays with reactors are equipped with fans depending |  |

## NOTE!

- provided dimensions apply only to a protection rating up to IP31
- higher protection ratings require larger enclosure sizes
- more information on capacitor banks can be found in chapter

BK, BKD - Capacitor banks

## PLACEMENT OF THE SWITCHGEAR AND INSTALLATION OF CONNECTIONS

The INSTAL-BLOK switchgears are designed for indoors installation. They can be placed directly on concrete flooring of the facility. Regardless of the type of foundation, switchgears must be placed exactly horizontally (maximum deviation may not exceed 2 mm over 1 m of base length). The switchgear (single cell) should be fixed to the foundation with 4 M 8 bolts in locations shown on Fig. 1. When placing the switchgear appropriate spacing should be maintained between the switchgear and other elements in the room in accordance with the regulations in force.

## External connections are made as:

- cables from the bottom to the supply bay and outgoing bays from a cable duct
- busbars or cables from the top to the supply bay
- cable from the top to outgoing bays

Fig. 1 - arrangement of holes in the foundation for the installation of the switchgear


## NOTE!

Duct depth should be adapted to the number and cross-section of the cables

CUSTOM DESIGNS - SWITCHGEARS FOR MAIN POWER SUPPLY STATIONS

LV SWITCHGEAR 220 V DC

Electrical diagram


External appearance of the switchgear


## Arrangement of devices



## Electrical diagram



Arrangement of the switchgear

FRONT PANEL


SWING FRAME


REAR OF THE CABINET - INSTALLATION PLATE


## Electrical diagram



External appearance of the switchgear


Arrangement of devices



External appearance of the switchgear



LV SWITCHGEAR nN 400/230 V AC

## External appearance of the switchgear



Arrangement of devices


## Z1 TYPE CABLE CABINET



## Low Voltage switchgear

## 4 / BK, BKD - Capacitor banks



## INTRODUCTION

The transmission of reactive power in a power grid system reduces the quality of power grid parameters and increases payments for electricity. The ZPUES.A. company provides solutions for inductive and capacitive reactive power compensation, such as:

- capacitor banks,
- capacitor banks with protective reactors,
- inductive banks (to be agreed with the manufacturer, after analysis of electrical grid parameters at the facility).


## REACTIVE POWER COMPENSATION IN AN ELECTRIC POWER SYSTEM

There are three levels of reactive power compensation:

## 1. Central compensation

The bank is installed at the main switchgear (most frequent use).

## 2. Group compensation

The bank is installed at the sub-switchgear or near a group of consumers (wide cable grid, distributed consumers).

## 3. Individual compensation

Capacitors installed at individual consumers (high power consumers).


## Technical data of the capacitor battery

| Rated power | from 40 to $600 \mathrm{kvar}{ }^{\text {1) }}$ |
| :--- | :--- |
| Rated power per stage | from 5 to 60 kvar |
| Number of compensation stages | from 4 to 15 |
| Rated operating voltage of the bank | $400 \mathrm{~V}^{2)}$ |
| Rated insulation voltage | $690 \mathrm{~V}^{3)}$ |
| Rated frequency | $50(60) \mathrm{Hz}$ |
| Busbar rated short-time withstand current | up to 40 kA |
| Ingress protection rating | IP3X |
| Cooperation with current transformers | $\mathrm{xx} / 5$ |
| Feeding in power supply cables | from the top or from the bottom |

## UWAGA!

> 1) The banks may be connected into bigger sets.
> 2) The banks may constructed in 500 V and 690 V versions.
> ${ }^{2)}$ In case of 690 V banks the insulation voltage is 750 V .
> ${ }^{4)}$ May be constructed up to IP54.

## GENERAL PRINCIPLES FOR CAPACITOR BAY SELECTION

| The share of reactive power in total power consumption is determined by two coefficients. The first is the power coefficient $\cos \varphi$, which is presented in the relationship (1.1) | 1.1 | $\cos \varphi=$ | $\begin{aligned} & \mathrm{P}(\mathrm{~kW}) \\ & \hline \mathbf{S}(\mathrm{kVA}) \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| The closer to one $\cos \varphi$ is, the smaller is the share of reactive power. Energy suppliers usually use power factor $\operatorname{tg} \varphi$ in their settlement contracts. A power factor $\operatorname{tg} \varphi$ was received from the relationship (1.2) | 1.2 | $\operatorname{tg} \varphi=$ | $\frac{E_{\mathrm{r}}(\text { kvarh })}{\mathrm{E}_{\mathrm{a}}(k W h)}$ |
| The closer to $0 \operatorname{tg} \varphi$ is, the smaller is the transmission of reactive power. Based on the obtained $\operatorname{tg} \varphi$ and the demand for active power an approximate capacitor bank power may be obtained. The QBat bank power is established from the relationship (1.3) | 1.3 | $\mathrm{Q}_{\text {Bat }}=$ | $\left.\operatorname{tg} \varphi-\operatorname{tg} \varphi_{\text {dop }}\right)$ |

Where $\operatorname{tg} \varphi$ - power factor required by the energy company.

## Power and energy diagram



| $\mathbf{P}$. | active power $[\mathrm{kW}]$ |
| :--- | :--- |
| $\mathbf{E}_{\mathrm{a}}$ | active energy $[\mathrm{kWh}]$ |
| $\mathbf{Q}$ | reactive power $[\mathrm{kvar}]$ |
| $\mathbf{E}_{\mathbf{r}}$ | reactive energy [kvarh] |
| $\mathbf{S}$ | apparent power [kVA] |
| $\mathbf{E}_{\text {opp }}$ | apparent energy [kVAh] |

## NOTE!

For the correct selection of a capacitor bank it is necessary to perform electrical grid measurements at the facility.

## Protecting the capacitor bank against adverse impact of harmonics.

The use of rectifiers, inverters and frequency converters in state of the art electricity consuming devices often causes deformation of voltage and current, which changes their waveform so that it is no longer a sine wave. They include numerous harmonics, which are an undesirable phenomenon, shortening the lifetime of electrical devices. This phenomenon is particularly dangerous in a capacitor bank. Capacitor reactance decreases when frequency increases, which results in a high intensity current flowing through the capacitor and destroying it. In order to protect the capacitor bank against adverse impact of harmonics, protective reactors connected in series with capacitors are used.

The degree to which distortions are present in the grid (the amount of harmonics) is specified by THD (Total Harmonic Distortion). The type of capacitor bank protection is selected depending on THD value.

| THD $\leq 15 \%$ | Capacitor bank with normal capacitors $\left(U_{\text {n Kond }}=400 \mathrm{~V}\right)$ |
| :--- | :--- |
| $15 \% \leq$ THD $\leq 25 \%$ | Capacitor bank with heavy duty capacitors $\left(U_{\text {n Kond }}=440 \mathrm{~V}\right)$ |
| $25 \% \leq$ THD $\leq 50 \%$ | Capacitor banks with compensating reactors |
| THD $\leq 50 \%$ | Semiconductor-based tracking compensator |

Capacitor banks made by ZPUE S.A. are identified by bank type symbol and enclosure type symbol


R - RN-W type enclosure


I - INSTAL-BLOK type enclosure


Z - ZR-W type enclosure


## CAPACITOR BANK PRODUCT RANGE

Normal capacitor banks (Un capacitors 400V)

| Nominal bank power [kvar] | Enclosure type | Adjustment step | Number of steps | Example dimensions [mm] [width x height x depth] |
| :---: | :---: | :---: | :---: | :---: |
| 40 | R | 5 | 4 | $550 \times 1275 \times 400$ |
| 45 | R | 5 | 4 | $550 \times 1275 \times 400$ |
| 50 | R | 5 | 5 | $550 \times 1275 \times 400$ |
| 55 | R | 5 | 4 | $550 \times 1275 \times 400$ |
| 60 | R / I | 10 | 3 | $550 \times 1275 \times 400$ |
| 70 | R/I/Z | 10 | 3 | $550 \times 1275 \times 400$ |
| 80 | R/I/Z | 10 | 4 | $550 \times 1275 \times 400$ |
| 90 | R/I/Z | 10 | 4 | $550 \times 1275 \times 400$ |
| 100 | R/I/Z | 10 | 5 | $550 \times 1275 \times 400$ |
| 110 | $\mathrm{R} / \mathrm{l} / \mathrm{Z}$ | 10 | 4 | $850 \times 1275 \times 400$ |
| 120 | R/I/Z | 10 | 5 | $850 \times 1275 \times 400$ |
| 140 | I/Z | 20 | 4 | $550 \times 1950 \times 400$ |
| 160 | I/Z | 20 | 5 | $550 \times 1950 \times 400$ |
| 180 | I/ Z | 20 | 5 | $750 \times 1950 \times 400$ |
| 200 | I/Z | 20 | 6 | $750 \times 1950 \times 400$ |
| 220 | I/Z | 20 | 6 | $750 \times 1950 \times 400$ |
| 240 | I/Z | 20 | 7 | $750 \times 1950 \times 400$ |
| 260 | I/Z | 20 | 7 | $750 \times 1950 \times 400$ |
| 280 | Z | 20 | 8 | $800 \times 2200 \times 600$ |
| 300 | Z | 20 | 8 | $800 \times 2200 \times 600$ |
| 320 | Z | 20 | 9 | $800 \times 2200 \times 600$ |
| 340 | Z | 20 | 9 | $800 \times 2200 \times 600$ |
| 360 | Z | 20 | 10 | $800 \times 2200 \times 600$ |
| 380 | Z | 20 | 10 | $1000 \times 2200 \times 600$ |
| 400 | Z | 20 | 11 | $1000 \times 2200 \times 600$ |
| 420 | Z | 20 | 11 | $1000 \times 2200 \times 600$ |
| 440 | Z | 20 | 12 | $1200 \times 2200 \times 600$ |
| 460 | Z | 25 | 12 | $1200 \times 2200 \times 600$ |
| 500 | Z | 25 | 11 | $1200 \times 2200 \times 800$ |
| 550 | Z | 25 | 12 | $1200 \times 2200 \times 800$ |
| 600 | Z | 25 | 13 | $1200 \times 2200 \times 800$ |

We can manufacture a bank with different parameters at the customer's request.

Capacitor bank with reactors 7\%

| Nominal bank power [kvar] | Enclosure type | Adjustment step | Number of steps | Example dimensions [mm] [width $x$ height $x$ depth] |
| :---: | :---: | :---: | :---: | :---: |
| 40 | R | 5 | 4 | $850 \times 1275 \times 400$ |
| 45 | R | 5 | 4 | $850 \times 1275 \times 400$ |
| 50 | R | 5 | 4 | $850 \times 1275 \times 400$ |
| 55 | R | 5 | 5 | $850 \times 1275 \times 400$ |
| 60 | R / I | 5 | 5 | $850 \times 1275 \times 400$ |
| 70 | 1 | 10 | 4 | $550 \times 1950 \times 400$ |
| 80 | I | 10 | 4 | $550 \times 1950 \times 400$ |
| 90 | I | 10 | 4 | $550 \times 1950 \times 400$ |
| 100 | I | 10 | 5 | $550 \times 1950 \times 400$ |
| 110 | 1 | 10 | 5 | $750 \times 1950 \times 400$ |
| 120 | 1 | 10 | 5 | $750 \times 1950 \times 400$ |
| 140 | 1 | 20 | 5 | $750 \times 1950 \times 400$ |
| 160 | I/ Z | 20 | 5 | $750 \times 1950 \times 400$ |
| 180 | Z | 20 | 6 | $1000 \times 2200 \times 600$ |
| 200 | Z | 20 | 6 | $1200 \times 2200 \times 600$ |
| 220 | Z | 20 | 7 | $1200 \times 2200 \times 600$ |
| 240 | Z | 20 | 7 | $1200 \times 2200 \times 600$ |
| 260 | Z | 20 | 8 | $1200 \times 2200 \times 600$ |
| 280 | Z | 20 | 9 | $1200 \times 2200 \times 600$ |
| 300 | Z | 25 | 8 | $1200 \times 2200 \times 600$ |
| 320 | Z | 25 | 8 | $1200 \times 2200 \times 600$ |
| 340 | Z | 25 | 8 | $1200 \times 2200 \times 600$ |
| 360 | Z | 25 | 9 | $2 \mathrm{x}(800 \times 2200 \times 600)$ |
| 380 | Z | 25 | 9 | $2 \mathrm{x}(800 \times 2200 \times 600)$ |
| 400 | Z | 25 | 10 | $2 \times(800 \times 2200 \times 600)$ |
| 420 | Z | 25 | 10 | $2 \times(800 \times 2200 \times 600)$ |
| 440 | Z | 25 | 11 | $2 \times(800 \times 2200 \times 600)$ |
| 460 | Z | 25 | 11 | $2 \times(800 \times 2200 \times 600)$ |
| 500 | Z | 25 | 12 | $2 \times(1000 \times 2200 \times 600)$ |
| 550 | Z | 25 | 13 | $2 \times(1000 \times 2200 \times 600)$ |
| 600 | Z | 25 | 14 | $2 \times(1000 \times 2200 \times 600)$ |

We can manufacture a bank with different parameters at the customer's request.

Capacitor bank with reactors 14\%

| Nominal bank power [kvar] | Enclosure type | Adjustment step | Number of steps | Example dimensions [mm] [width x height x depth] |
| :---: | :---: | :---: | :---: | :---: |
| 40 | R | 5 | 4 | $850 \times 1275 \times 400$ |
| 45 | R | 5 | 4 | $850 \times 1275 \times 400$ |
| 50 | R | 5 | 5 | $850 \times 1275 \times 400$ |
| 55 | R | 5 | 5 | $850 \times 1275 \times 400$ |
| 60 | R / I | 5 | 4 | $850 \times 1275 \times 400$ |
| 70 | I | 10 | 4 | $550 \times 1950 \times 400$ |
| 80 | 1 | 10 | 5 | $550 \times 1950 \times 400$ |
| 90 | 1 | 10 | 4 | $550 \times 1950 \times 400$ |
| 100 | 1 | 10 | 5 | $550 \times 1950 \times 400$ |
| 110 | 1 | 10 | 4 | $750 \times 1950 \times 400$ |
| 120 | 1 | 10 | 5 | $750 \times 1950 \times 400$ |
| 140 | 1 | 20 | 5 | $750 \times 1950 \times 400$ |
| 160 | I/Z | 20 | 6 | $750 \times 1950 \times 400$ |
| 180 | Z | 20 | 6 | $1000 \times 2200 \times 600$ |
| 200 | Z | 20 | 7 | $800 \times 2200 \times 600$ |
| 220 | Z | 20 | 7 | $1200 \times 2200 \times 600$ |
| 240 | Z | 20 | 8 | $1200 \times 2200 \times 600$ |
| 260 | Z | 25 | 7 | $1200 \times 2200 \times 600$ |
| 280 | Z | 25 | 8 | $1200 \times 2200 \times 600$ |
| 300 | Z | 25 | 8 | $1200 \times 2200 \times 600$ |
| 320 | Z | 25 | 9 | $1200 \times 2200 \times 600$ |
| 340 | Z | 25 | 9 | $1200 \times 2200 \times 600$ |
| 360 | Z | 25 | 10 | $2 \times(800 \times 2200 \times 600)$ |
| 380 | Z | 25 | 10 | $2 \times(800 \times 2200 \times 600)$ |
| 400 | Z | 25 | 11 | $2 \mathrm{x}(800 \times 2200 \times 600)$ |
| 420 | Z | 25 | 11 | $2 \times(800 \times 2200 \times 600)$ |
| 440 | Z | 25 | 12 | $2 \times(800 \times 2200 \times 600)$ |
| 460 | Z | 25 | 12 | $2 \times(800 \times 2200 \times 600)$ |
| 500 | Z | 25 | 13 | $2 \times(1000 \times 2200 \times 600)$ |
| 550 | Z | 25 | 14 | $2 \times(1000 \times 2200 \times 600)$ |
| 600 | Z | 25 | 16 | $2 \times(1000 \times 2200 \times 600)$ |

We can manufacture a bank with different parameters at the customer's request.

## Low Voltage switchgear

5 / LV cable boxes


## INTRODUCTION

Cable boxes manufactured by ZPUE S.A. are based on the company's SKR fibreglass reinforced plastic enclosures and metal enclosures. They form the basic elements of cable-based LV power grids. Depending on intended requirements, they are used for the electricity distribution, electricity metering and to protect against the effects of overloads and short-circuits in low voltage cable grids. They allow feeding out from a low voltage cable route and supplying of consumers with an internal power line. They function as final or intermediate connections.

The offer of ZPUE S.A. includes a varied range of connection boxes: cabling, metering, cabling \& metering, which were constructed in close cooperation with power distribution companies. Cabling, metering and cabling \& metering connection boxes constructed with thermosetting plastic enclosures and metal enclosures may be installed outdoors in a free-standing version with foundations, as wallmounted or as part of a building façade.

## CHARACTERISTICS

- modular design enabling the replacement of faulty parts,
- a design which enables easy expansion of the existing connection box,
- a design which enables both vertical and horizontal partitioning into power distribution company's section and recipient's section,
- optimum depth of the cabinet enabling the installation of strip-mounted switch disconnectors,
- the possibility of using access windows and access doors,
- IP44 / IP54 protection rating in thermosetting plastic enclosures with the possibility of increasing to IP66 in metal enclosures,
- excellent UV resistance,
- possibility of manufacturing connection boxes with any layout and dimensions (does not require expenditures for the purchase of moulds),
- environmentally friendly material,
- effective labyrinth ventilation prevents condensation from forming,
- high impact resistance obtained by definition of controlled breaking point,
- plasticity of aluminium enclosures results in the enclosure deforming instead of cracking.

5.1 / Cable connection boxes in thermosetting plastic enclosures


## Compliance with standards:

ZPUE S.A. certifies that the manufactured LV switchgears and connection boxes meet the requirements of the Directives of the European Parliament and of the Council: RoHS Directive No 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment and Low Voltage Directive (LVD) No 2014/35/EU on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits and meet the requirements and standards in question.

The compliance of the marked products with the aforementioned directives is ensured by meeting the requirements of the following standards:

- PN-EN 61439-1:2011 - "Low-voltage switchgear and controlgear assemblies. General rules",
- PN-EN 61439-2:2011 - "Low-voltage switchgear and controlgear assemblies. Power switchgear and controlgear assemblies",
- PN-EN 61439-3:2012-"Low-voltage switchgear and controlgear assemblies. Distribution boards intended to be operated by ordinary persons (DBO)",
- PN-EN 61439-5:2015-02 - "Low-voltage switchgear and controlgear assemblies. Assemblies for power distribution in public networks",
- PN-EN 60529:2003, PN-EN 60529:2003/A2:2014-07 - "Degrees of protection provided by enclosures (IP Code)",
- PN-EN 62262:2003 - "Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)"
- PN-EN 62208:2011 - "Empty enclosures for low-voltage switchgear and controlgear assemblies. General requirements",
- PN-E-05163:2002 - "Enclosed low-voltage switchgear and controlgear assemblies. Guide for testing under conditions of arcing due to internal fault",
- PN-EN 50274:2004 -"Low-voltage switchgear and controlgear assemblies. Protection against electric shock. Protection against unintentional direct contact with hazardous live parts"
- PN-EN 60695-2-11:2015-02 - "Fire hazard testing. Test methods. Glowing/hot-wire based test methods. Glow-wire flammability test method for end-products (GWEPT)",
- PN-EN 60695-11-10:2014-02 - „Fire hazard testing. Test flames. 50 W horizontal and vertical flame test methods".
- PN-EN 60112:2003, PN-EN 60112:2003/A1:2010-"Method for the determination of the proof and the comparative tracking indices of solid insulating materials".

| Basic technical data: |  |
| :--- | :---: |
| Rated impulse | $230 \mathrm{~V} / 400 \mathrm{~V}$ |
| Rated insulation voltage | 690 V |
| Rated current | 630 A |
| Ingress protection rating | IP44 / IP54 |
| Mechanical impact resistance | IK 10 |
| Device protection class | II class |
| Flammability class | V0 |
| Comparative tracking index | CTI 600 |
| Standard colour | RAL 7035 |

## P1-RS/LZR/F catalogue number EN-5



Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

P2-RS/LZV/LZR/F catalogue number EN-12


## Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400$ V |
| Rated insulation voltage | $500 / 690$ V |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |




KRSN-1/7R-NH-2/F catalogue number EN-32


Basic technical parameters


| Rated current | up to 630 A |
| :--- | :--- |
| Rated impulse | $230 / 400$ V |
| Rated insulation voltage | $500 / 690$ V |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

## ZK1x-1P catalogue number E-2



Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

ZK2-2Px catalogue number E-4


Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | up to 400 V |
| Rated insulation voltage | 690 V |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

## ZK1e-1P catalogue number T-58



Basic technical parameters

| Rated current | $100 / 160 \mathrm{~A}$ |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |



Basic technical parameters

| Rated current | up to 630 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

ZK3 RBL 2x400A+1x160A/2P KK catalogue number PGE-66


## Basic technical parameters

| Rated current | up to 630 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

Zk1 RBK 160A/1P catalogue number PGE-40


Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

Sz-1 catalogue number R-1


Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

ZZ-1 catalogue number R-7


Basic technical parameters

| Rated current | up to 400 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

SZ-2 catalogue number R-2


Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

## EXAMPLE SOLUTIONS ACC. TO ZPUE S.A. STANDARDS

ZK1/3PP catalogue number 30/10


## Basic technical parameters

| Rated current | up to 630 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |



Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |



## Basic technical parameters

| Rated current | up to 100 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |



## Basic technical parameters

| Rated current | up to 63 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |



## Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

## RSOU 1 catalogue number 32/10



Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

String BOX - SCK switchgear



## Basic technical parameters

| Rated current | up to 160 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

RB construction switchgear

Rb1 catalogue number 38/10


Basic technical parameters

| Rated current | up to 63 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |




Basic technical parameters

| Rated current | up to 220 A |
| :--- | :--- |
| Rated impulse | $230 / 400 \mathrm{~V}$ |
| Rated insulation voltage | $500 / 690 \mathrm{~V}$ |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44 |
| Device protection class | Class II |

5.2 / Cable connection boxes in aluminium enclosures

## BASIC TECHNICAL PARAMETERS

| Rated impulse | $230 \mathrm{~V} / 400 \mathrm{~V}$ |
| :--- | :---: |
| Rated insulation voltage | 1000 V |
| Rated current | $250-630 \mathrm{~A}$ |
| Continuous rated current of the meter part | up to 100 A |
| Rated frequency | 50 Hz |
| Ingress protection rating | IP44-IP54 ${ }^{\text {1) }}$ |
| Number of outgoing bays | unlimited (1-...) |
| Number of metering bays | unlimited (1-...) |

Dimensions and weights of standard connection boxes

| ZK connection boxes |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design | 120 |  |  |  | 240 |  |  |  |
| External dimensions | Width $[\mathrm{mm}]$ | Height [mm] | $\begin{aligned} & \text { Depth } \\ & {[\mathrm{mm}]} \end{aligned}$ | Weight [kg] | Width [mm] | Height [mm] | Depth [mm] | Weight [kg] |
| ZK-1a, ZK-1b | 400 | 660 | 250 | 11,0 | 400 | 860 | 250 | 14,5 |
| $\begin{aligned} & \text { ZK-2a } \\ & \text { ZK-2b, ZK-2c, ZK-2d } \end{aligned}$ | 600 | 660 | 250 | $\begin{aligned} & 22,5 \\ & 20,0 \end{aligned}$ | 600 | 860 | 250 | $\begin{aligned} & 29,0 \\ & 26,5 \end{aligned}$ |
| $\begin{aligned} & \text { ZK-3a } \\ & \text { ZK-3b, ZK-3e } \\ & \text { ZK-3c } \\ & \text { ZK-3d } \end{aligned}$ | 850 | 660 | 250 | $\begin{aligned} & 25,0 \\ & 25,5 \\ & 23,5 \\ & 25,0 \end{aligned}$ | 850 | 860 | 250 | $\begin{aligned} & 31,5 \\ & 32,5 \\ & 30,5 \\ & 32,0 \end{aligned}$ |
| Maximum cross-sections of connection cables | $120 \mathrm{~mm}^{2}$ |  |  |  | $240 \mathrm{~mm}^{2}$ |  |  |  |

- connection boxes may be made in three versions: free-standing, wall-mounted and recess-mounted,
- in case of a recess-mounted connection box, the dimension of the recess should be increased by 10 mm compared to the connection box dimensions (as in the drawing of the ZK-1 connection box),
- it is possible to manufacture connection boxes with different dimensions, adapted to the needs at the location.


## Dimensions and weights of standard connection boxes

ZKP cabling \& metering connection boxes

| Design | 120 |  |  |  | 240 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External dimensions | Width [mm] | Height [mm] | Depth [mm] | Weight [kg] | Width [mm] | Height <br> [mm] | Depth [mm] | Weight [kg] |
| ZKP 1/1L | 400 | 1260 | 250 | 22,0 | 400 | 1460 | 250 | 25,5 |
| ZKP 2/2L | 600 | 1260 | 250 | 32,5 | 600 | 1460 | 250 | 39 |
| ZKP 3/2L, ZKP 3/3L | 850 | 1260 | 250 | 44,5 | 850 | 1460 | 250 | 51,5 |
| Maximum cross-sections   <br> of connection cables  <br> - power supply acc. to customer's needs   <br> - internal power  acc. to customer's needs <br> supply line   | $\begin{gathered} 120 \mathrm{~mm}^{2} \\ \text { acc. to customer's needs } \end{gathered}$ |  |  |  | $\begin{gathered} 240 \mathrm{~mm}^{2} \\ \text { acc. to customer's needs } \end{gathered}$ |  |  |  |

## NOTE!

${ }^{1)}$ On agreement with the manufacturer it is possible to construct the enclosure with IP66 protection rating

## Foundation

Free-standing connection boxes are installed on prefabricated concrete foundations. These foundations enable feeding in of cables from four directions. The view, dimensions and example foundations of cable connection boxes was presented on figures below.

## View and dimensions of prefabricated foundations



Example solutions for cabling and cabling \& metering connection boxes

ZK-1 cable boxes


Free-standing


Wall-mounted


Recess-mounted
(recess width 420)

ZK-2 cable boxes


ZK-3 cable boxes


ZK-4 cable boxes


ZKP1/1L cabling \& metering connection box


Side view


## Side view



Side view


Schematic diagram of the connection box


Schematic diagram of the connection box


Schematic diagram of the connection box

${ }^{1)}$ - for a version supplied with a max. $120 \mathrm{~mm}^{2}$ cable
${ }^{2)}$ - for a version supplied with a max. $240 \mathrm{~mm}^{2}$ cable

EXAMPLE SOLUTIONS FOR CABLE CABINETS

ZK-nN $1 z$ cable cabinet

## Electrical diagram



Power supply
View


Arrangement of devices


## ZK-nN $2 z$ cable cabinet

## Electrical diagram



Arrangement of devices


## Low Voltage switchgear

5.3 / SOU, RSOU - street lighting cabinets

The cabinet enclosure is made of bent aluminium sheet, which is previously degreased, phosphated and powder-painted in any colour or of plastic (fibreglass reinforced thermosetting polyester). Cabinets made of aluminium sheet have a double roof to prevent condensation of water vapour. The structure is mounted on a concrete foundation (views and dimensions of prefabricated concrete foundations were presented in the "Cable connection boxes in aluminium enclosures" chapter in section 5.2). A lightweight enclosure of aluminium sheet facilitates transportation and placement. Manufacturing technology and advantages of plastic cabinets are described in the "Cabling, metering and cabling \& metering connection boxes constructed with plastic enclosures" chapter.

Examples of SOU street lighting cabinets (in an aluminium enclosure)


Electrical diagram


Arrangement of devices


## Low Voltage switchgear

## 7 / Thermosetting plastic enclosures



## INTRODUCTION

Responding to the needs of customers for the supply of high quality cable cabinet enclosures constructed with SMC fibreglass reinforced thermosetting polyester ZPUE S.A., having at its disposal appropriate machinery and human resources, manufactures high quality SKRD and SKRF type thermosetting plastic enclosures. By considering the feedback provided by our customers concerning the existing technical solutions and suggestions of changes to the solutions currently available on the market, we have created a product range of SKR cabling \& distribution cabinets, adapted to the requirements of national energy distribution companies. Our company, as the leading manufacturer in the sector continuously improves manufacturing technology, resulting in the highest quality of our products. Our products have appropriate certificates.

## Manufacturing technology

The used material is a key element in ensuring high quality of manufacturing and long service life of the cabinets. The ZPUE S.A. company has used its long-term relationships with the best industrial chemical manufacturers in Europe, and the knowledge and experience of personnel who has been working in the field of SMC plastic processing for years. The material used for the manufacturing of our cabinets consists of multiple components, which guarantee meeting the requirements of mechanical and thermal strength and restricting the harmful impact of UV radiation on the used material, which guarantees long life and excellent appearance of our cabinets.

## Area of application

Enclosures of thermosetting plastic are widely used in power engineering, industry and telecommunications due to their universality. They are manufactured from insulating, self-extinguishing and flame retardant composite (polyester + fibre glass - SMC) with high weather resistance (UV). Modular construction enables any combination of the enclosure with foundation, extension or cable compartment, and combining of enclosures in either a vertical or horizontal layout. Varying dimensions enable the adaptation of the enclosure to the customer's requirements or to the used equipment. The specially developed internal design of the enclosure, integrated with additional elements ensures quick and convenient installation of equipment and devices inside the enclosure. The enclosures are painted as standard with RAL 7035 and at the customer's request they may be coated with plastic varnish in any colour in the RAL palette.

## Characteristics and advantages of SKR enclosures

Made of highest quality self-extinguishing SMC material. Excellent durability and appearance, for many years. Resistance to UV radiation and changing weather conditions. Very high mechanical strength. Ventilation for ensuring the removal of excess moisture. Modular design enabling the replacement of faulty parts. Due to modular design it is possible to divide the enclosures vertically and horizontally. Possibility of configuring any connection box or expanding an existing one. Possibility of equipping with strip-type switch disconnectors (in 320 mm version enables parking) Three-point door locking mechanism made of plastic or metal. Possibility of simple and quick toolless removal of doors and foundation covers, facilitating the work of installers. External surface is ribbed, improving appearance and hindering placement of posters on the cabinet.

## BASIC TECHNICAL DATA

| Insulation / protection class | II |
| :--- | :---: |
| Ingress protection rating | IP44 / IP54 |
| Mechanical impact protection | IK 10 |
| Flammability class | Vo |
| UV resistance | YES |
| Heat resistance | 960 |
| Colour | RAL 7035 |
| Operating conditions | $-50^{\circ} \mathrm{C} \div+55^{\circ} \mathrm{C}$ |
| Rated impulse | $230 \mathrm{~V} / 400 \mathrm{~V} / 500 \mathrm{~V}$ |
| Rated insulation voltage | $500 \mathrm{~V} / 690 \mathrm{~V}$ |
| Comparative tracking index | CTI 600 |
| Rated current | up to 630 A |
| Dimensional tolerance | $\pm 3 \mathrm{~mm}$ |

SKRD and SKRF type insulating enclosures with equipment meet the requirements of the Directives of the European Parliament and of the Council: RoHS Directive No 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment and Low Voltage Directive (LVD) No 2014/35/EU on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits and meet the requirements and standards in question.

The products presented herein were tested by IEL (Institute of Electrical Engineering) in Warsaw and BBJ-SEP (Quality Testing Office of the Association of Polish Electrical Engineers) in Lublin and meet the safety requirements of the following standards:

- PN-EN 62208:2011 - „Empty enclosures for low-voltage switchgear and controlgear assemblies. General requirements",
- PN-EN 60529:2003, PN-EN 60529:2003/A2:2014-07 - „Degrees of protection provided by enclosures (IP Code)",
- PN-EN 62262:2003 - „Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code)",
- PN-EN 60695-2-11:2015-02 - „Fire hazard testing. Test methods. Glowing/hot-wire based test methods. Glow-wire flammability test method for end-products (GWEPT)",
- PN-EN 60695-11-10:2014-02 - „Fire hazard testing. Test flames. 50 W horizontal and vertical flame test methods".
- PN-EN 60112:2003, PN-EN 60112:2003/A1:2010 - „Method for the determination of the proof and the comparative tracking indices of solid insulating materials".
- PN-EN ISO 4892-2:2013-06-Plastics. Methods of exposure to laboratory light sources. Xenon-arc lamps".

Based on the obtained certificates and approvals, our products were provided with B and CE marking, which confirm the high quality of our goods, guarantee safety of use, repeatability of parameters and satisfaction of customers.

## Explanation of enclosure markings




SKRD 260/400/1


SKRD 400/400/1


SKRD 520/400/1


SKRD 520/400/2


SKRD 660/400/1


SKRD 660/400/2


SKRD 660/400/1



SKRD 660/400/2


SKRD 800/400/2


SKRD 3x26/40


SKRD 52+26/40


SKRD 26+52/40



SKRD 520/600/1


SKRD 660/600/1


SKRD 520/600/2


SKRD 660/600/2


SKRD 800/600/2


SKRD 660/600/1



SKRD 800/600/1


SKRD 3x26/60



SKRD 660/800/2


SKRD 800/800/1


SKRD 800/800/2


SKRD 800/800/3


SKRD 800/800/4


SKRD 3x26/80



## SKRD CABINET PRODUCT RANGE



SKRF 260/400/1


SKRF 600/400/1


SKRF 800/400/2


SKRF 400/400/1


SKRF 660/400/1


SKRF 800/400/2


SKRF 520/400/1


SKRF 660/400/2


SKRF 800/400/1


SKRF 520/400/2


SKRF 660/400/2


SKRF $3 \times 26 / 40$
www.zpue.com / 112


SKRF 52+26/40


SKRF 260/600/1



SKRF 400/500/1


SKRF 520/600/1


SKRF 660/600/2


SKRF 800/500/2


SKRF 520/600/2



SKRF 800/600/1


SKRF 800/600/2


SKRF 26+52/60

SKRF 260/800/1


SKRF 52+26/60


SKRF 400/800/2

SKRF 520/800/1



SKRF 3x26/60


SKRF 400/800/1

SKRF 520/800/2



SKRF 520/800/4


SKRF 660/800/1


SKRF 800/800/1




SKRF 660/800/1


SKRF 800/800/2


SKRF 660/800/2


SKRF 800/800/3


SKRF 660/800/2


SKRF 800/800/4




SKRF 260/800/1-320


SKRF 400/800/1-320


SKRF 520/800/1-320


SKRF 520/800/2-320


SKRF 660/800/1-320


SKRF 660/800/1-320


SKRF 260/800/2-320

SKRF 660/800/2-320



SKRF 800/800/1-320


SKRD 260/800/1-320


SKRD 400/800/1-320


SKRD 520/800/1-320



SKRD 660/800/1-320A


SKRD 660/800/2-320A


SKRD 660/800/2-320B


SKRD 800/800/1-320


SKRD 800/800/2-320



Insert M8 nuts in the installation holes Fasten the interlock elements with bolts.

Place the rear wall on the mounting base. Place the left and right side wall perpendicular to the rear wall. Press and move upwards.


Place the roof and fasten it with four $60 \times 20$ bolts inserted through the protrusions.

## DOOR ASSEMBLY

Place the door on the mounting base, internal side up. Place the lock body with handle side down in the openings in the doors. Fasten the large lock nut and a small hexagonal nut in the handle rotation point. Place the upper and lower rods in the openings in the doors.


## PEDESTAL INSTALLATION

Remove the M6 bolt from the rotating element of the handle. Place the rectangular metal washer in the rotating lock bolt. Put the rotating lock bolt on the rotating element of the lock, fit the spline to the slide blocks of the lock rods and fasten the M6 bolt. Bolt the interlock element. Insert the hinges in the door openings.

Place 2 covers of the pedestal on the mounting base, push in the sliders and insert fasteners (these covers will be used first during the installation). In the remaining 2 covers just push in the sliders.



Place the pedestal A cover according to the sequence of arrows and lock with sliders. Do the same with the $B$ cover.

Rotate the pedestal and fasten covers to legs with bolts. Mount the remaining covers in the manner described above. Tighten the stand grid bolts, ensuring that the pedestal legs remain parallel.



Place the pedestal C cover according to the sequence of arrows and proceed in the same manner as with $A$ and $B$ cover.


CABINET ASSEMBLY


| Item | Part name | Pcs | KTM/Catalogue number |
| :---: | :---: | :---: | :---: |
| 1. | Roof | 1 | D 400250000 |
| 2. | Back wall | 1 | ST 400800888 |
| 3. | Right side wall | 1 | PSB 250800000 |
| 4. | Left side wall | 1 | LSB 250800000 |
| 5. | Door | 1 | DR 400800000 |
| 6. | 09 washer | 4 | ... |
| 7. | Hinges | 2 | Z |
| 8. | Rods | 1+1 | CZ800 |
| 9. | Rotating lock bolt | 1 | ZOZ |
| 10. | Lock body with handle | 1 | к |
| 11. | Small lock nut | 1 | ... |
| 12. | Large lock nut | 1 | ... |
| 13. | Square washer | 1 | ... |
| 14. | M6 bolt | 1 | ... |
| 15. | 07 washer | 8 | ... |
| 16. | $60 \times 20$ bolt | 8 | ... |
| 17. | M8 nut | 16 | ... |
| 18. | Pedestal leg | 2 | NC 250800000 |
| 19. | Pedestal cover | 6 | PC 400240000 |
| 20. | Pedestal cover latch | 8 | ZPC |
| 21. | Angle section for cables | 1 | KK 400 |
| 22. | Stand grid | 1 | KU 250400 |
| 23. | Fastening element | 2 | ... |
| 24. | Śruba M8×80 | 4 | ... |
| 25. | Podkładka 09 duża | 4 | ... |
| 26. | M8x50 bolt | 4 | ... |
| 27. | Interlock element | 2 | EB |
| 28. | Bolt | 2 | ... |
| 29. | Pedestal extension | 2 | NDC |

We reserve the right to introduce technical changes.

## power your future

# SIVACON 58 

The low-voltage switchgear that sets new standards

## Table of contents

Many advantages, many functions ..... 3
SIVACON S8 - features ..... 4
Circuit breaker system - Extremely friendly operation ..... 7
Universal installation system - Individual configuration options (withdrawable, plug-in technology) ..... 8
SIVACON withdrawable units ensure safety in operation and maintenance ..... 10
Universal installation system. Individual configuration options (stationary, 3NJ6 pin strips) ..... 14
Fixed-mounted system - Wide integration options ..... 16
Fixed-mounted 3NJ4 in-line system - Efficient assembly ..... 18
Plug-in 3NJ6 in-line system - Quick modernization ..... 19
Arc resistance - Optimal protection ..... 20
Perfect for your needs ..... 21
Frame and enclosure ..... 23
Location of the main busbars - Variety of solutions ..... 24
SIVACON S8 - structure verification by testing in accordance with PN-EN 61439 ..... 25
Structure verification ..... 26
Technical data ..... 27


All elements of the new generation of switchgears fit together
in shape and functionality.

## Many advantages, numerous features

- Maximum system safety thanks to standard modules with construction verification.
- Maximum personnel safety thanks to the electric arc resistant locking system.
- High-quality industrial design that perfectly matches the modern style of the rooms.
- Space-saving erection surfaces, from $400 \times 500 \mathrm{~mm}$.
- Variable, top or rear position of the main busbars.
- Combinations of different installation systems in one cell.
- Flexible adaptation of the internal separation form to different requirements.
- Simple subsequent changes of door opening direction thanks to universal hinges.
- The ventilation system characterized by a high degree of performance and maintenance advantages.
- Cable / busbar connections from the top, bottom or rear.


## SIVACON S8 - features

$\qquad$




1. Position of the main busbars at the top up to 6300 A
2. Variable rear busbar position up to 7000 A (top and/or bottom)

3. Multi-profile busbars allow easy assembly of modular installation devices
4. Cells with reactive power compensation with design verification according to PN-EN 61439 reduce transmission losses

5. Plug-in busbar system with contact protection, cover (IP 20B) for quick and easy replacement of fuse switch disconnectors
6. Optimal connection conditions in the busbar connection compartment

7. Overview of power distribution thanks to a standardized labeling system for sections and feeders
8. A modern look with design elements like the side panel and optionally extendable base

## Circuit breaker system

## Extremely friendly operation



Supply, outgoing and coupling cells are equipped with SENTRON® 3WL air circuit breakers in stationary and withdrawable technology, or alternatively, with SENTRON 3VL compact circuit breakers. Because many receivers are generally installed on the line downstream these circuit breakers, they are extremely important in ensuring long-term operational safety of the switchgear and personnel safety. SIVACON compactly and safely meets the above requirements through the components of the circuit breaker system.

# Universal installation system 

 (withdrawable, plug-in technology)

Universal mounting system with withdrawable units in combination with fixed-mounted outgoing feeders and plug-in 3NJ6 in-line unit design.

Because many applications require a space-optimized assembly of the power distribution switchgears, different installation systems must be integrated in one cell. For such applications, the universal SIVACON assembly system ensures high performance, safety and diversity due to the combination of outgoing feeders in withdrawable, plug-in, stationary techniques and outgoing feeders in the 3NJ6 pin strip technology. What's more, the withdrawable technique provides significant flexibility with often varying requirements such as variable motor parameters or connecting new receivers. In addition, this technique also meets ergonomic requirements and facilitates simple and safe operation, as well as short set-up times for maximum system availability.


Rear plug-in busbar system


Optional with shutter

## Plug-in busbar system

The plug-in busbar system is located at the back of the cell. It provides touch protection without any additional covers for active parts.

- Installation resistant to electric arc
- Phase separation
- 3- and 4-pole technique
- Touch protection (IP20B)
- Connection holes in the 50 mm modular grid for mounting standard withdrawable units


## Optional

- Double-action shutters for standard withdrawable units

- Maximum system security thanks to standard modules with type testing.
- Identical operation of all withdrawable unit sizes.
- Sizes of withdrawable units matched to power parameters.
- All parts are installed inside the withdrawable unit - protection against accidental damage.
- Integrated protection against switching errors for all withdrawable units.
- Clear indication of the position of the withdrawable units.
- Separate operation of the main switch and withdrawable unit position.
- "Test" and „disconnected" position with the door closed without reducing the degree of protection of the switchgear.
- Lockable in „diconnected" position.
- Patented slow wearing contact system of withdrawable unit ensuring long life.
- Optional mechanical coding of withdrawable units to avoid mistake with withdrawable units of the same size.
- Hinged panel for mounting control and signaling devices.
- Standard withdrawable units for cable and motor outgoing feeders up to 630 A .
- Fuse and circuit breaker technology.


Hinged panel for mounting
control and signalling devices
in order to perform service works during work.

## Standard withdrawable units

- Height 100 mm to 700 mm up to 18 (withdrawable units in one cell)


## Optionally to standard withdrawable units a similar plug-in design

- Supply and outgoing contact systems permanently attached to the plug-in segment.
- „Connected" and „diconnected" position (no „test" position).
- Integrated protection against switching errors.




## Flexibility and safety when making changes in the configuration of the cell

- Simple conversion or modernization of compartments with withdrawable units without disconnecting the voltage of the cell.
- Does not require connection work in the compartment with withdrawable units.
- Main and control circuit cable connectors in separate connection compartments.
- Cable compartment 400 mm or 600 mm width with operation from the front.
- Cable compartment with rear operation 600 mm width with 600 mm width cell.
- Control connectors in screw or spring technology.


## Simple operation of the withdrawable unit without the need to overcome resistance



Coding of withdrawable units mechanically prevents mistakes in mounting withdrawable units of the same size (up to 9216 combinations).

[^4][^5]

## Communication with SIMOCODE pro via PROFIBUS DP

- Integrated full motor protection.
- Extensive control functions.
- Convenient diagnostic options.
- Autonomous handling of each outgoing feeder via the operator panel.
- Reduced cost of equipment and cabling.


# Universal Installation System 

Individual Combination Options (Fixed-Mounted Design with compartment doors, Plug-In 3NJ6 In-Line Design)


A cell with universal mounting space in fixed+mounted design (individual doors for each compartment) in combination with plug-in 3 NJ6 in-line design.

Many applications require different solutions suitable for different protection systems, therefore different installation systems must be integrated in one cell. For such applications, the universal SIVACON mounting system ensures high performance, safety and flexibility due to the combination of outgoing feeders in fixed-mounted design and in plug-in 3NJ6 in-line system.


Vertical distribution bars


Separation of functional compartments according
to user requirements


Patented connection terminals

- High system security due to standard modules with type testing,
- Cable feeders up to 630 A with and without current measurement,
- Combination of various installation techniques (fixed-mounted, plug-in base and plug-in 3NJ6 in-line design),
- Expansion modules when functional separation of compartments is required (up to form 4b),
- Doors about the height of the entire cell or individual for each functional compartment,
- Cable connection compartment 400 mm or 600 mm width.


## Compartments

- Expansion modules to ensure individual ease of use and meet safety requirements.


## Patented connection terminals

- Internal separation to form 4b.


## Fixed-Mounted System with Front Covers

## Wide integration options



- High system safety due to standard modules with type testing.
- Cable feeders up to 630 A with and without current measurement.
- Modularly combined functional groups.
- The innovative quick fastening system allows easy mounting of the cover.
- Hinged frame with covers for easier supervision and ease of maintenance.
- Expansion modules when functional separation of compartments is required (up to form 4b).
- Front control panel with covers, optionally with full cell door height.
- Doors with an inspection window enabling integration with modern interiors.
- Cable connection compartment 400 mm or 600 mm width.

Some applications do not require component replacement under operating conditions or short downtimes are allowed. In these cases, the SIVACON system in fixed-mounted system covers ensures maximum performance, safety and flexibility.


Quick mounting system of the front cover


Hinged frame with covers

## Quick assembly system <br> or hinged frame with covers

- The innovative quick fastening system allows simple and quick assembly of the cover.
- Hinged frame with covers for easier supervision and ease of maintenance.


## Single or multiple feeders

- Smoothly adjustable mounting plate installation depth to achieve a homogeneous front operating plane.
- Operation of devices from the front cover.
- Feeders with or without a plug-in base.


Outgoing feeders set with SENTRON 3VL circuit breakers


Possibility to mount installation devices

## Solutions for installation devices

- Durable aluminium mounting rail ensuring simple and durable installation of installation devices.


## Fixed-Mounted 3NJ4 In-Line System

 Efficient assembly- High system safety due to standard modules with type testing.
- Cable feeders up to 630 A with and without current measurement.
- Possibility of installing up to 14 feeders in one cell.
- Fuse replacement with the receiver switched off.
- Door optionally with a cut-out or without a cut-out.
- Optional installation of quick assembly kits or mounting plates for individual equipment.
- Cell widths: 600 mm and 800 mm .
$\qquad$


## Plug-In 3NJ6 In-Line System

## Quick modernization



Cell with 3NJ6 switch disconnector with fuses

- High system safety due to standard modules with type testing.
- Switch disconnector with double break for cable feeders up to 630 A.
- Integrated replaceable current transformer.
- Manual or motor drive with stored energy mechanism.
- Possibility of upgrading the accessories by the user.
- High packing density - up to 35 feeders in one cell.
- Cable connection compartment: 400 mm or 600 mm width.
- Degree of protection up to IP41.
- Replacement of outgoing feeders possible with powered switchgear busbars.


3NJ6 switch disconnector with fuses

Distribution busbar system, protected against accidental contact (IP20B)





Strip-type disconnectors with a plug-in power connector are an economical alternative to the withdrawable system and provide simple and quick modernization, as well as - thanks to their modularity - measurement activities in working conditions. For such applications, SIVACON guarantees high efficiency, safety and flexibility.

## Arc resistance

 Optimal protectionThe LV switchgear test for arc faults is considered a special test in accordance with IEC 61641 and VDE 0660 Part 500, Appendix 2. This test is used to assess the hazards to which personnel may be exposed in the event of an arc. Thanks to these tests, already standard SIVACON versions have a personnel safety certificate.

## Assessment criteria

- There can be no spontaneous opening of the doors and covers.
- Parts must not fall off.
- There may not form any opening in the housing.
- Control indicators may not ignite.
- The PE conductor circuit on the touched distribution cabinet parts must function.


## Elements of additional protection

In order to limit the effects of arc faults in the switchgear, the following can be additionally used:

- Arc barriers limiting the occurrence of arc faults to one cell.
- Isolating the main busbars of the switchgear to prevent the initiation of an arc fault.


Top plate with pressure release in the event of an arc fault


Arc barriers


Isolated main busbars

## Perfect for your needs

Modular technology - both for individual cells and entire systems - ensures optimal adaptation of SIVACON switchgears to your individual needs.

## Optimal adjustment to spatial conditions

- Optional wall-mounted, free-standing or double-front mounting.
- Optional cable or busbar connections from the top or bottom.
- System height optionally 2000 mm or 2200 mm .
- Additional base 100 mm or 200 mm .


## Quick adjustment to new power distribution requirements

- Simple replacement or extension of funcional units.
- Easy and safe access to the distribution busbars.
- Simple ordering process and short delivery times thanks to the modular system.
- Optimal position of the main busbars at the top or rear of the switchgear.
- Individual equipment of the compartments, independent of the position of the main busbars and the depth of the cell.
- Internal separation suitable to customer requirements from form 1 to form 4b (PN-EN 61439-2).
- Withdrawable, plug-in and fixed-mounted units that can be combined in one cell (universal installation system).


Rear main busbar position (top and / or bottom)


Top main busbars position


## Frame and enclosure

The frame containing all elements of the cell structure consists of stable screw-fastened sheet-steel profles.

- Rows of holes in the form of a raster placed along the entire height and width of the frame with a spacing of 25 mm , which allow individual configuration.
- Patented lock and hinge system to ensure staff safety.
- Doors with individual or central locking.
- Universal hinge system that allows easy change of the direction of door opening.
- Door opening angle up to $125^{\circ}\left(180^{\circ}\right.$ for freestanding assembly).
- Doors with a two-position lock or with a rotary lever lock.
- Top plates with pressure relief system.
- Frame heights: optionally 2000 mm or 2200 mm .
- Additional base 100 mm or 200 mm .
- Standard separation partitions between cells.


## Surface treatment

- Cubicle parts, bases, back panels and bottom plates galvanized with the use of Sendzimir method.
- Easy and safe access to distribution busbars.
- Doors, enclosures and covers painted / powder coated in light grey RAL 7035; construction elements in blue-green.



## Material

The frame and enclosure are made of sheet steel with the following thicknesses:

- Frame, base 2.5 mm .
- Covers: 2.0 mm .
- Doors: 2.0 mm .


Locking system


正


Hinge


Top plate


Bottom plate with sliding sheet

## Location of the main busbars

## Variety of solutions



Various switching tasks require individual solutions:
Whether "simple" systems or complex networks with transversal and longitudinal couplings: SIVACON combines efficient design with the highest quality.

- The top or rear position of the main busbars.
- Main busbar systems for rated currents up to 7000 A.
- Rated peak withstand current (lpk) up to 330 kA.
- Integrity of two main busbar systems in one switchgear.
- Connection points of transport units easily accessible from the front and top.
- Maintenance-free main busbar connections.


## Additional elements

- Arc barriers limiting the occurrence of arc faults to one cell.
- Isolating the main busbars of the switchgear to prevent the initiation of an arc fault.



The vertical PE and N busbars are located on the right side of the cable compartment.


Connection points of the main busbar are accessible from the front of the switchgear.
$\qquad$

# SIVACON S8 - structure verification by testing in accordance with PN-EN 61439 

Necessary to demonstrate compliance with standard PN-EN 61439


## Requirements of the PN-EN 61439 standard

Low voltage switchgears should be designed, manufactured and tested in accordance with the requirements of PN-EN 61439-1 / -2 (VDE0660 part 600-1 / -2). To determine switchgear compliance with these standards, two main verification methods are required - structure verification and routine inspections. The structure verification includes tests performed at the product development stage and should be carried out by the original manufacturer. Routine inspections should be carried out by the prefabricator on the finished switchgear before delivery.

## Structure verification

The SIVACON S8 switchgear ensures the safety of personnel and devices thanks to type tests in accordance with PN-EN 61439-2. Its physical properties have been checked in a test chamber, in both operating and emergency conditions. This guarantees the highest safety of people and the system. Structural verification and routine inspections are an important element of quality assurance and are a prerequisite for CE marking in accordance with EU regulations and directives.

## Benefits

- Safety of people and the system thanks to type tests in accordance with PN-EN 61439-2.
- Highest quality guaranteed thanks to structure verification and routine inspections.
- Tests are always carried out at a complete switchboard with all devices installed.


## Structure verification

|  | Verification by tests | Verification by calculations | Verification by following design principles |
| :---: | :---: | :---: | :---: |
| 1. Strength of materials and parts | $V$ | --- | --- |
| 2. Degree of protection |  | --- | $\sqrt{ }$ |
| 3. Isolation gaps |  | $V$ | $V$ |
| 4. Protection against electric shock and continuity of protective conductors | $V$ | $V^{1}$ | $V^{1}$ |
| 5. Installation of devices | --- | --- |  |
| 6. Internal electrical circuits and connections | --- | --- |  |
| 7. Terminals for external conductors | --- | --- | $\vee$ |
| 8. Insulating properties | $\checkmark$ | --- | $v^{2}$ |
| 9. Thermal restrictions | $\sqrt{ }$ | Up to 1600 A | Up to $630 \mathrm{~A}^{3}$ |
| 10. Short-circuit strength |  | Conditionally ${ }^{3}$ | Conditionally ${ }^{3}$ |
| 11. Electromagnetic Compatibility (EMC) | $\checkmark$ | --- | $\vee$ |
| 12. Mechanical operation | $\sqrt{ }$ | --- | --- |

[^6]Norms and standards

| Low Voltage Switchgear |
| :--- | :--- |
| and Control gear |
| Testing of response to internal faults |
| (arcing faults) |

PN-EN 61439-2
DIN EN 61439-2 (VDE 0660 Część 600-2)
IEC 61641, VDE 0660 Część 500, Suplement 2
Protection against electric shock

| Rated insulation voltage (Ui) |
| :--- |
| Rated operating voltage (Ue) |
| Direct and indirect distances |
| between active elements |


| Main circuit | 1000 V |
| :--- | :--- |
| Main circuit | Up to 690 V |
| Rated impulse withstand voltage |  |
| Uimp | 8 kV |
| Overvoltage category | 111 |
| Pollution degree rating | 3 |

Busbar bridges (3-pole and 4-pole)

| Main busbar horizontal | Rated Current <br> Reated peak withstand current (Ipk) <br> Rated short-time withstand current (Icw) | Up to 7000 A Up to 330 kA Up to 150 kA |
| :---: | :---: | :---: |
| Vertical busbar bridges in switching technology | Rated Current <br> Reated peak withstand current (Ipk) <br> Rated short-time withstand current (Icw) | Up to 6300 A Up to 220 kA Up to 100 kA |
| Vertical busbar bridges in the universal assembly technology and stationary technique | Rated Current <br> Reated peak withstand current (lpk) Rated short-time withstand current (Icw) | Up to 1600 A Up to 143 kA Up to 65 kA * |
| Vertical busbar bridges in 3NJ4 fuse strip technology | Rated Current <br> Rated short-time withstand current (Icw) | Up to 1600 A Up to 50 kA |
| Vertical busbar bridges in 3NJ6 plug strip technology | Rated Current <br> Reated peak withstand current (lpk) <br> Rated short-time withstand current (Icw) | Up to 2100 A Up to 110 kA Up to 50 kA * |
| 3WL / 3VL circuit breakers Cable outgoing feeders Motor outgoing feeders | 3WL / 3VL circuit breakers Cable outgoing feeders Motor outgoing feeders | Up to 6300 A <br> Up to 630 A <br> Up to 250 kW |
| Form 1 to 4b <br> Type 7 for form 4 | IEC 61439-2, Sekcja 8.101, VDE 0660 Part 600-2, 8.101 BS EN 61439-2 |  |
| (Coating according to DIN 43656) <br> Frames and bases <br> Doors <br> Side panels <br> Rear panels, top plates <br> Ventilated roof <br> Standard colour of powder coated elements (coating thickness $100 \pm 25 u m)$ | Sendzimir-galvanized <br> Powder-coated <br> Powder-coated <br> Sendzimir-galvanized <br> Powder-coated <br> RAL 7035, light gray <br> Design parts: blue green basic |  |
| In accordane with IEC 60529, EN 60529 | IP30, IP31, IP40, IP41, IP42, IP54 |  |
| Preferred dimensions in accordance with DIN 41488 | Height (without base): <br> Width: <br> Depth (wall-mounted, freestanding): <br> Depth (double-front): | 2000, 2200 mm <br> 200, 350, 400, 600, 800, 850, 1000, 1200 mm $500,600,800 \mathrm{~mm}$ 1000, 1200 mm |

$\left.*\right|_{c c}=100 \mathrm{kA}$


[^0]:    Additional equipment is marked with red

[^1]:    ${ }^{\text {* }}$ Minimum bay dimensions depending on the installed devices.

[^2]:    ${ }^{*}$ Minimum bay dimensions depending on the installed devices.

[^3]:    UWAGA!
    ${ }^{1)}$ Up to 1500 V AC in custom design.
    ${ }^{2}{ }^{2}$ Up to 1000 V AC in custom design.
    ${ }^{3}$ Other design technology to be agreed with the manufacturer.
    ${ }^{4)}$ Depending on the devices used.

[^4]:    Coding element in compartment of the withdrawable unit

[^5]:    Coding element in the withdrawable unit

[^6]:    ${ }^{1}$ Effectiveness of protection devices in the event of a failure
    ${ }^{2}$ Only impulse withstand voltage
    ${ }^{3}$ Comparison with the design already tested

